
Scenario-Based Meta-Scheduling for

Energy-Efficient, Robust and Adaptive

Time-Triggered Multi-Core

Architectures

DISSERTATION

zur Erlangung des Grades eines Doktors

der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt von

M.Sc. Babak Sorkhpour

eingereicht bei der Naturwissenschaftlich-Technischen Fakultät

der Universität Siegen

Siegen – July 2019

2

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

 Betreuer und erster Gutachter

Prof. Dr. Roman Obermaisser, Universität Siegen

 Zweiter Gutachter

Prof. Dr. Raimund Kirner, University of Hertfordshire

 Prüfungskommission:

Prof. Dr. Roman Obermaisser

Prof. Dr. Raimund Kirner

Prof. Dr. Kristof Van Laerhoven

Prof. Dr. Madjid Fathi (Vorsitz der Prüfungskommission)

Tag der mündlichen Prüfung: 09. July 2019

3

 Scenario-Based Meta-Scheduling for

Energy-Efficient, Robust and Adaptive

Time-Triggered Multi-Core

Architectures

DISSERTATION

to obtain the degree of Doctor

of Science Engineering

Submitted by M.Sc. Babak Sorkhpour

Submitted to the Faculty of Natural Sciences and Technology

 the University of Siegen

Siegen July 09, 2019

4

I dedicate this dissertation to my parents, my son, and my

family.

5

Acknowledgements

First, I would like to express my special appreciation, regards, gratitude, and thanks to

my advisor Professor Dr. Roman Obermaisser for his assistance and guidance. You have

been a tremendous mentor and life coach for me, showing admirable patience.

I would also like to thank Professor Dr. Madjid Fathi and Professor Dr. Raimund Kirner

for their encouragement and advice, allowing me to overcome challenges and grow as a

research scientist.

I offer special thanks to my family, including my parents, my sister, and my brother, for

their endless and immeasurable love and support, especially throughout this part of my

life.

I give special thanks to my wonderful son for his unconditional love, support, and

understanding. This heroic man is my constant motivation and source of hope.

Finally, and above all, I am profoundly and forever indebted to the creator of love, my

Lord, for his unconditional love, support, and encouragement throughout my life.

It is my pleasure and honor to express my gratitude to all the people who contributed, in

whatever manner, to the success of this work.

Babak Sorkhpour

Siegen

July 10, 2019

6

Declaration of authorship

I hereby certify that this dissertation and its context has been written by me and is based

on my own research work, unless mentioned otherwise. No other person’s work, research,

or publication has been used in this thesis without due acknowledgement. All references

and verbatim extracts have been quoted, and all sources of data and information, including

graphs, figures, tables, and data sets, have been specifically acknowledged.

7

ABSTRACT

Complex electronic systems are used in many safety-critical applications (e.g., aerospace,

automotive, nuclear stations), for which certification standards demand the use of assured

design methods and tools. Scenario-based meta-scheduling (SBMeS) is a way of

managing the complexity of adaptive systems via predictable behavioral patterns

established by static scheduling algorithms. SBMeS is highly relevant to the internet of

things (IoT) and real-time systems. Real-time systems are often based on time-triggered

operating systems and networks and can benefit from SBMeS for improved energy-

efficiency, flexibility and dependability.

This thesis introduces an SBMeS algorithm that computes an individual schedule for each

relevant combination of events such as dynamic slack occurrences. Dynamic frequency

scaling of cores and routers is used to improve energy efficiency while preserving the

temporal correctness of time-triggered computation and communication activities (e.g.,

collision avoidance, timeliness). Models of applications, platforms and context are used

by scheduling tools to prepare reactions to events and to generate meta-schedules.

In this work, techniques and tools are developed to schedule a set of tasks and messages

on Network-on-chip (NoC) architectures to minimize total energy consumption,

considering time constraints and adjustable frequencies. This algorithm is intended for

mixed-criticality and safety-critical adaptive time-triggered systems and can cover fault-

tolerance requirements. It can also help to react to fault events by recovering the system.

We also introduce a meta-scheduling visualization tool (MeSViz) for visualizing

schedules. We also introduce a meta-scheduling visualization tool (MeSViz) for

visualizing schedules.

We experimentally and analytically evaluate the schedules’ energy-efficiency for cores

and routers. In addition, the timing is analytically evaluated, based on static slack and

dynamic slack events. Simulation results show that our dynamic slack algorithm

produces, on average, an energy reduction of 64.4% in a single schedule and

41.61% energy reduction for NoCs. By compressing the schedule graphs the memory

consumption can be reduced by more than 61%.

8

KURZBESCHREIBUNG

In vielen sicherheitskritischen Anwendungen (z.B. Luft- und Raumfahrt, Automotive,

Kernkraftwerke) kommen komplexe elektronische Systeme zum Einsatz, für die

Zertifizierungsnormen den Einsatz von sicheren Konstruktionsmethoden und -tools

vorschreiben. Die Szenario-basierte Meta-Planung (SBMeS) ist eine Möglichkeit, die

Komplexität von adaptiven Systemen über vorhersehbare Verhaltensmuster zu steuern,

die durch statische Planungsalgorithmen festgelegt werden. SBMeS ist sehr bedeutsam

für das Internet der Dinge (IoT) und Echtzeitsysteme. Echtzeitsysteme basieren oft auf

zeitgesteuerten Betriebssystemen und Netzwerken und können von SBMeS für mehr

Energieeffizienz, Flexibilität und Zuverlässigkeit profitieren.

Diese Abhandlung stellt einen SBMeS-Algorithmus vor, der einen individuellen Zeitplan

für jede relevante Kombination von Ereignissen wie dynamische Schlupfereignisse

berechnet. Die dynamische Frequenzskalierung von Prozessorkernen und Routern dient

der Verbesserung der Energieeffizienz unter Beibehaltung der zeitlichen Korrektheit von

zeitgesteuerten Berechnungs- und Kommunikationsaktivitäten (z.B.

Kollisionsvermeidung, Echtzeitfähigkeit). Mit Hilfe von Modellen von Anwendungen,

Plattformen und Kontexten werden Planungswerkzeuge eingesetzt, um Reaktionen auf

Ereignisse vorzubereiten und Meta-Planungen zu generieren.

Im Rahmen dieser Arbeit werden Techniken und Werkzeuge entwickelt, um eine Reihe

von Berechnungen und Nachrichten auf Network-On-Chip (NoC)-Architekturen zu

planen, mit dem Ziel, den Gesamtenergieverbrauch unter Berücksichtigung von

Zeitvorgaben und einstellbaren Frequenzen zu minimieren. Der Algorithmus unterstützt

sicherheitskritische adaptive zeitgesteuerte Systeme und kann die Anforderungen

hinsichtlich der Fehlertoleranz abdecken. Er kann auch dazu beitragen auf Störungsfälle

zu reagieren, indem er das System wiederherstellt. Außerdem stellen wir ein Meta-

Planungstool (MeSViz) zur Visualisierung von zeitgesteuerten Plänen vor.

Wir analysieren und bewerten die Energieeffizienz der Pläne experimentell für

Prozessorkerne und Router. Darüber hinaus wird das Zeitverhalten anhand von statischen

und dynamischen Schlupfereignissen analytisch bewertet. Simulationsergebnisse zeigen,

dass unser dynamischer Schlupfalgorithmus im Durchschnitt eine Energieeinsparung von

64,4% in einem einzigen Zeitplan und 41,61% Energieeinsparung für NoCs erbringt.

Durch die Komprimierung der Zeitpläne kann der Speicherverbrauch um mehr als 61%

reduziert werden.

9

List of Abbreviations

WCET Worst-case execution time

TTEthernet Time-triggered ethernet

NoC Network-on-a-chip

CAN Controller area network

MPSoC Multi-processor-system-on-a-chip

MILP Mixed integer linear programming

MPSoC Multi-processor system-on-a-chip

MeS Meta-scheduler

SBMeS Scenario-based meta-scheduling

MeSViz Meta-schedule visualizer

TT Time-triggered

TTS Time-triggered systems

TTN Time-triggered network

TTC Time-triggered communication

TTA Time-triggered architecture

LIN Local interconnect network

DVFS Dynamic voltage and frequency scaling

SDF Slow-down factor

TSDF Task slow-down factor

MSDF Message slow-down factor

10

Contents

ABSTRACT .. 7

KURZBESCHREIBUNG ... 8

CONTENTS.. 10

CHAPTER 1: INTRODUCTION .. 15

1.1. MOTIVATION .. 16

1.2. RESEARCH SCOPE .. 19

1.3. STRUCTURE OF THE THESIS .. 20

CHAPTER 2: RELATED WORK AND BASIC CONCEPTS .. 22

2.1. REAL-TIME SYSTEMS ... 22

2.1.1. Embedded real-time systems ... 22
2.1.1.1. Makespan .. 23

2.1.2. Dependability .. 23
2.1.2.1. Mixed-criticality systems .. 23

2.1.3. Adaptivity .. 24

2.2. TIME-TRIGGERED SYSTEMS (TTSS) ... 24

2.3. GLOBAL TIME BASE ... 24

2.3.1. Time-triggered networks (TTNs) ... 25
2.3.1.1. Messages ... 25

2.3.2. Time-triggered multi-processor system-on-a-chip (MPSoC) and network-on-a-chip (NoC).. 25

2.3.3. Time-triggered (TT) execution environments .. 27
2.3.3.1. Tasks ... 27
2.3.3.2. Worst-case execution time (WCET) .. 27
2.3.3.3. Slack .. 28

2.4. ENERGY MANAGEMENT TECHNIQUES... 28

2.4.1. Clock gating and power gating ... 28
2.4.1.1. Dynamic voltage and frequency scaling (DVFS) .. 28

2.4.1.1.1. Frequency tuning on network-on-chip (NoC) ... 28
2.4.1.1.2. Distributed dynamic voltage and frequency scaling (DVFS) algorithm at the router and core

level... 29
2.4.1.1.3. Worst case execution times (WCETs) and distributed dynamic voltage and frequency scaling

(DVFS) ... 29
2.5. ENERGY MANAGEMENT FOR DIFFERENT TYPES OF RESOURCES ... 30

2.5.1. Network-on-chip (NoC) ... 30

2.5.2. Processor .. 31

2.5.3. Task procrastination and slack reclamation ... 31

2.6. SCHEDULING FOR TIME-TRIGGERED SYSTEMS (TTS)... 32

2.6.1. Algorithms for static.. 32
2.6.1.1. Static scheduling for energy efficiency .. 33
2.6.1.2. Static scheduling for reliability .. 33

2.6.2. Meta-scheduling (MeS) and mode changes .. 34

2.6.3. Optimization techniques for scheduling .. 35
2.6.3.1. Quadratic Optimization ... 35
2.6.3.2. Mixed integer quadratic programming (MIQP) ... 35
2.6.3.3. Genetic algorithm (GA) and optimization techniques ... 35

2.7. SCENARIO-BASED SCHEDULING IN EVENT-TRIGGERED SYSTEMS .. 36

11

2.7.1. Reliability and redundancy in scenario-based meta-scheduling (SBMeS) 37

2.7.2. Scenario-based meta-scheduling (SBMeS) for reconfigurable systems 37

2.7.3. Scenario-based meta-scheduling (SBMeS) for robust systems ... 38

2.8. OVERVIEW OF SCHEDULING-RELATED WORKS ... 38

2.9. SUMMARY ... 39

2.10. VISUALIZATION OF SCHEDULES ... 40

CHAPTER 3: SYSTEM MODEL .. 42

3.1. OVERVIEW OF THE MODELS ... 42

3.2. Input models for a meta-scheduler (MeS) .. 42

3.2.1. The physical model (PM) ... 42

3.2.2. The application model (AM) ... 43

3.2.3. The context model (CM) .. 44

3.2.4. The schedule model (SM) .. 45

3.3. MODELLING OF THE OPTIMIZATION PROBLEM .. 46

3.4. CHOICE OF OPTIMIZATION TECHNIQUE ... 46

3.5. STATIC SCENARIO-BASED META-SCHEDULING (SBMES) AND MAPPING POLICY 47

3.6. DECISION VARIABLES, CONSTANTS, AND CONSTRAINTS .. 48

3.7. DEFINITIONS .. 48

3.7.1. Collision avoidance constraint ... 49

3.7.2. Connectivity constraints .. 50
3.7.2.1. Links reliability ... 50

3.7.3. Task allocation and assignment constraints ... 50

3.7.4. Message duration .. 50

3.7.5. Path and visited cores ... 50

3.7.6. Task dependency constraints ... 51

3.7.7. Message deadlines .. 51

3.8. DECISION VARIABLES .. 51

3.8.1. Slowdown factors (SDFs) .. 51

3.8.2. Hop count .. 52

3.9. ENERGY CONSUMPTION ... 53

3.9.1. Effective Speed .. 54

3.9.2. Frequency Co-Efficient ... 54

3.10. QUADRATIZATION OF THE PRODUCT .. 54

3.11. THE OBJECTIVE FUNCTION ... 55

3.12. SLACK RECOVERY TECHNIQUE ... 58

3.12.1. Makespan and slack .. 59

3.12.2. Power consumption and slack ... 60

CHAPTER 4: SCENARIO-BASED META-SCHEDULING (SBMES).. 63

4.1. META-SCHEDULER (MES) ... 63

4.2. SYSTEM MODEL AND ALGORITHM .. 64

4.3. ARCHITECTURE OF META-SCHEDULER (MES) .. 66

4.4. META-SCHEDULER (MES) DESIGN ... 68

4.4.1. Event-driving technique .. 68

4.4.2. The schedule model (SM) tree creator .. 68

4.4.3. Output generator .. 68

4.5. FUNCTIONS AND ALGORITHMS ... 68

4.5.1. Main functions and algorithms ... 68

4.6. SCENARIO-BASED META-SCHEDULING (SBMES) AND FAULT MODELING .. 69

12

4.6.1. Fault assumptions ... 70

4.6.1.1. Tolerance threshold range... 70
4.6.2. Fault-tolerant algorithm ... 71

4.7. THE GOALS OF META-SCHEDULER (MES) DESIGN .. 72

CHAPTER 5: VISUALIZATION AND EVALUATION OF SCHEDULES 75

5.1. REQUIREMENTS FOR BASIC VISUALIZATION ... 75

5.2. REQUIREMENTS FOR META-VISUALIZATION ... 75

5.3. GRAPH MAPPING .. 75

5.4. GANTT MAPPING .. 76

5.5. VISUALIZATION OF SCHEDULE CHANGES ... 76

5.6. ENERGY CALCULATION .. 77

5.6.1. Energy consumption .. 77

5.6.2. Energy reduction ... 78

5.7. MEMORY AND META-SCHEDULES .. 79

5.7.1. Convergence of meta-schedules for saving memory ... 80

5.7.2. Memory consumption .. 80

5.7.3. DELTA SCHEDULING TECHNIQUE AND DELTA TREE .. 81

5.8. SUMMARY ... 82

CHAPTER 6: IMPLEMENTATION .. 84

6.1. SCHEMA MODELLING ... 84

6.2. IMPLEMENTATION OF THE DATA MODEL .. 85

6.3. IMPLEMENTATION OF META-SCHEDULING (MES) .. 85

6.3.1. XML .. 86

6.4. IMPLEMENTATION OF META-SCHEDULING VISUALIZATION TOOL (MESVIZ) 87

6.4.1. Outputs and formats .. 88

6.4.2. Single schedule Gantt mapping... 88

6.4.3. Multi-schedule Gantt mapping.. 89

6.4.4. Graph mapping of meta-schedules ... 89

CHAPTER 7: EVALUATION EXAMPLE SCENARIOS AND RESULTS 91

7.1. EVALUATION OBJECTIVES ... 91
7.2. VISUALIZING SCENARIO-BASED META-SCHEDULES FOR ADAPTIVE TIME-TRIGGERED SYSTEMS (TTS)

 ... 91

7.2.1. Simple model ... 91
7.2.1.1. Schedule model (SM) content ... 91
7.2.1.2. Output results .. 92

7.2.2. Complex model (CM) .. 92
7.2.2.1.1. Schedule model (SM) content ... 92
7.2.2.1.2. Output results .. 93

7.2.3. Discussion ... 94

7.3. EVALUATION OF META-SCHEDULING (MES) RESULTS ... 96

7.3.1. Convergence results for saving memory ... 96
7.3.1.1. Example 1. Sample scenario with four tasks and three messages .. 96
7.3.1.2. Results for delta scheduling technique (DST) and delta tree (DT) .. 100
7.3.1.3. Example 2. Sample scenario with seven tasks and five messages and 𝑁𝑠𝑠𝑚 = 128 100
7.3.1.4. Example 3. Big sample with 𝑁𝑡𝑠𝑘 = 9 , 𝑁𝑚𝑠𝑔 = 8 , and 𝑁𝑠𝑠𝑚 = 512 schedules 102
7.3.1.5. Discussion .. 102

7.3.2. Scenario-based meta-scheduling (SBMeS) for frequency scaling of processors 103
7.3.2.1. Decision variables ... 103

13

7.3.2.2. Slow-down factor .. 103
7.3.2.3. Objective function ... 104
7.3.2.4. Input metadata for meta-scheduling (MeS) ... 104
7.3.2.5. Outputs and results .. 105
7.3.2.6. Overhead ... 105
7.3.2.7. Discussion ... 105

7.3.3. Scenario-based meta-scheduling (SBMeS) for frequency scaling of processors and network-

on-chip (NoC) .. 106
7.3.3.1. Scheduling constraints ... 106
7.3.3.2. Decision variables ... 106
7.3.3.3. Input metadata for meta-scheduling (MeS) ... 106
7.3.3.4. Outputs and results .. 108
7.3.3.5. Discussion ... 108
7.3.3.6. Overhead ... 110

7.3.4. Scenario-based meta-scheduling (SBMeS) for frequency scaling with flexible task-to-

processor mapping .. 111
7.3.4.1. Input models .. 111
7.3.4.2. Outputs and results .. 112
7.3.4.3. Discussion ... 112
7.3.4.4. Overhead ... 114

7.3.5. Scenario-based meta-scheduling (SBMeS) for improved reliability 115
7.3.5.1. Input models .. 115
7.3.5.2. Outputs and results .. 117
7.3.5.3. Discussion ... 119

7.4. SUMMARY ... 122

CHAPTER 8: CONCLUSION AND FURTHER RESEARCH .. 124

GLOSSARY.. 126

LIST OF FIGURES .. 128

LIST OF TABLES .. 131

LIST OF EXAMPLES.. 132

LIST OF ALGORITHMS .. 133

PUBLICATIONS AND PREVIOUS WORKS ... 134

I. REFERENCES .. 135

14

15

Chapter 1: Introduction

Many algorithms, methods, and techniques are proposed for scheduling distributed

embedded real-time systems. Schedulability analysis is a primary component of real-time

systems scheduling. In particular, the real-time system depends on static schedules that

define the use of computational and communication resources based on a global time

base. In [1], Kopetz explains how the correctness of a real-time system also depends on

the timing of the computational results.

A group of tasks and messages is said to be schedulable with a certain scheduling method

if enough resources (e.g., cores, routers) are available to execute all these tasks and

transmit all messages before their deadlines. Each real-time task and message is assigned

a deadline, which is defined in an application model (AM). In the time-triggered

paradigm [1] of real-time scheduling, processes are controlled and scheduled by the

progression of time only, and a schedule is designed for the total duration of a system’s

execution. One of the typical techniques used for time-triggered systems (TTS) is the

schedule table. These are easy to verify and thus favorable in safety-critical systems that

must be certified [2].

Scenario-based scheduling can support adaptive TTS by decreasing dependence on

expensive and complex hardware, dynamic computational costs, and equipment vendor

solutions and by replacing or reducing componential hardware functions with scheduling

implementations on low-cost multi-purpose devices.

Energy-efficiency, energy-management, energy-saving, and energy reduction methods

and algorithms are used in many applications (e.g., mobile phones, smart TVs), while

their applicability in safety-critical systems is restricted.

Network-on-chip (NoC) technology contributes significantly to the overall energy

consumption of an MPSoC, and we introduce a meta-scheduler (MeS) for SBMeS that

supports dynamic voltage and frequency scaling (DVFS) in time-triggered NoCs and

MPSoCs.

Some of the results and methods (e.g., meta-scheduling) described in this thesis are also

used in the SAFEPOWER project platform and documents [3].

16

1.1. Motivation

Embedded systems are pervasive in modern safety-relevant systems. They range from

automotive electronics to aerospace flight control and multi-purpose complex aerospace

vehicle systems; and many premium carmakers plan to invest heavily in e-cars, which

significantly depend on embedded systems [4].

However, in the era of the IoT, the minimizing of power consumption is a primary

concern for system designers. Scheduling optimization helps engineers and system

designers to increase energy-efficiency and improve the behavior of a system [5].

Many embedded systems are based on time-triggered networks (TTN) and used in safety-

critical applications (e.g., healthcare, e-cars, space, military, nuclear stations, and

aircraft). Efficient scheduling algorithms and methods are required for such systems (e.g.,

mathematical programming, artificial intelligence, scheduling heuristics, neighborhood

search [6]), where failure has severe consequences [7]. “Scheduling limited resources

among requesting entities is one of the most challenging problems in computer science

[8]”.

In SBMeS systems, the MeS generates specific schedules for each situation triggered by

relevant events (e.g., fault and slack). To evaluate schedules, system designers must

design, model, compare, understand, debug, and simulate the schedules. These are the

important challenges for SBMeS. Adapting to significant events within the computer

system or in the environment is another challenge in TTS.

NoCs have emerged in recent years to improve performance and solve the challenges of

existing interconnect solutions for many cores. NoCs provide a scalable and high-

performance communication architecture for complex integrated systems.

Moreover, this solution tackles the challenge of power consumption, which is one of the

essential concerns of complex embedded systems. Research findings indicate that the

communication interconnect can consume up to 36% of the power required in an MPSoC

[9]. This significant power consumption calls for low-power techniques for NoCs.

The output of most schedulers is in text format, making it difficult to identify problems,

especially when a large number of schedules are generated and must be debugged or

compared [10].

This challenge is intangible when using text logs with large amounts of data or abstract

graphics that absorb the engineer’s mental resources. The majority of the schedule

visualizers are designed to illustrate a single schedule and cannot cover multiple

schedules in one scope. However, the generation of schedules via scenario-based

scheduling solutions and algorithms for real-time multi-processor systems is gaining

importance [10]. The MeS approach is to add dynamic actions by computing several valid

schedules, dynamically chosen based on the system status [11].

17

SBMeS is a scheduling technique [12, 13], which predicts, controls, and models the

circumstance events in safety-critical systems. MPSoC systems typically represent one

of the most power consuming components of embedded systems, and most research

focuses on reducing power and energy consumption of computational cores. MPSoCs

typically support the scaling of frequency and voltage (e.g., DVFS), as well as multiple

sleep states for cores. However, frequency tuning for both cores and routers in multi-core

architectures (e.g., NoC) has so far been an open research challenge.

In addition, energy efficiency and energy management are becoming important issues in

real-time systems design [14]. One NoC design goal has emerged in the embedded and

real-time systems market as a means of reducing and managing power consumption [15].

To deploy TT NoCs, static scheduling of application workloads is a prerequisite. In

addition to ensuring application requirements, such as precedence constraints and

deadlines, energy consumption is influenced significantly by task allocations and

communication/execution plans [14].

Finding the optimum schedules for maximum energy reduction is the goal of the

scheduling techniques presented in this work. This will result in better task allocations

and communication plans. The scheduling algorithm extends previous work (e.g., [12],

[14], [16]), introducing an energy reduction scheduling method for TTS [17]. Energy

reduction is achieved via DVFS by SBMeS, a widely used technique that provides the

support to reduce energy consumption of embedded systems and multi-core architectures.

Energy-efficiency in DVFS is achieved by dynamically adjusting the voltage, frequency,

and performance settings of the application. To achieve the full advantage of the slack

that results from variations in task execution time, it is important to recalculate the

frequency and voltage settings during these periods (i.e., online).

Energy-efficiency optimization uses dynamic frequency scaling, in which we can

individually scale the frequency of each core and router. This algorithm is suitable for

mixed-criticality [18] and safety-criticality [19] by supporting fault-tolerant [20]

applications and adaptive systems. Compared to static slack (SS) scheduling techniques,

our approach provides more energy efficiency and enhanced flexibility.

The frequency is tuned for each component (core or router) and is optimized depending

on the task or message, regarding events and the system global time.

However, optimal voltage and frequency scaling algorithms are computationally

expensive and complex, if used at runtime. Therefore, to overcome and reduce online

complexity, we propose quasi-static scheduling [21] for frequency scaling, supporting TT

multi-core architectures. This method allows exploitation of dynamic slack (DS) and

avoids energy dissipation due to online adaptation of the frequency settings.

Our method can support fault-tolerance and energy-efficiency, which are significant

objectives in many safety-critical systems. Our algorithm considers the task execution

times, message injection and transmission times, and possibilities of frequency changes

18

and can schedule and map the tasks and messages to be executed before the corresponding

deadlines [22].

Our SBMeS model optimizes the trade-off between reliability, fault-tolerance, and

energy-efficiency to handle multiple tasks and message sets regarding events (i.e., based

on frequency tuning and scaling inside cores and routers). We consider the impact of each

event on other events (e.g., increasing or decreasing frequency) for better resource and

energy management in the TTS.

We present scheduling techniques for attaining the optimal schedules for different events

with maximum energy reduction, while meeting other functional and nonfunctional

constraints. A corresponding optimization problem is formulated in IBM Ilog CPLEX,

and the results indicate significant improvements in energy efficiency.

In the e-car area, safety is one of the most critical parameters; hence, the fault-tolerant

scheduling method used in SBMeS (cf. Section 4.6.1) can be applied in automotive

systems to achieve greater safety.

In this work, slack occurrence is defined as an event. The required algorithm, methods,

and scenarios are designed to support this event in improving energy-efficiency.

In many works, schedule results are explained by presenting the abstract text of the

essential information (e.g., tasks, messages, makespan, deadlines, times).

A visualization of a schedule enables the engineers and system designers to easily perform

sanity checks – checking and tracing the tasks, messages, makespan, nodes, and in

SBMeS, the behavior and reactions for each scenario after an event. Although scheduling

is an essential issue in TTS, embedded systems, and computer science, few visualization

tools [8] are available to help engineers and scientists extend and develop more reliable

scheduling algorithms, methods, and models [23]. Some visualization tools show only

abstract schedules as graphical output and contain neither complete information nor

detailed explanations of the events and the schedules (e.g., differences or changes) [7].

Comparing, understanding, and debugging thousands of schedules generated by SBMeS

poses severe challenges for system designers, as discussed later in this work.

This work introduces a scenario-based tool, MeSViz – designed to support developers and

engineers in evaluating scheduling algorithms, models, and methods for adaptive TTS.

This tool can show event details and schedule changes and dependencies due to events. It

visualizes schedules on four different layers: the first presenting individual schedules for

each scenario, the second displaying multiple schedules for multi-scenario events, the

third generating graphs, and the fourth showing energy and timing.

19

1.2. Research scope

This thesis presents SBMeS models and optimal algorithms and techniques, which can

support adaptive TTS and reliability requirements for MPSoCs and NoCs. This thesis

addresses TTS because the temporal interference between the cores and routers of

MPSoCs and NoCs significantly complicates the analysis of worst-case execution times

(WCET) [24].

The novelty contributions of this thesis can be summarized as follows:

1. Scheduling of TT communication and computational activities: The scheduling

algorithm considers the task-execution times, message-transmission times and the

possibilities of frequency changes. Our scheduler supports the mapping and

scheduling of both tasks and messages to multi-core architectures, for minimizing the

total energy consumption regarding the timing and frequencies of cores, routers and

slack distribution.

2. DVFS in time-triggered architecture: This work enables the use of DVFS for both

communication and computation resources for MPSoCs, in order to attain energy

efficiency of TT multi-core architectures. Hence, it can extend energy efficiency

optimisation of SBMeS for MPSoCs with time-triggered communication (TTC) not

only providing frequency scaling of not only cores but also the NoC’s routers.

3. The scheduling method for improved reliability and fault-tolerance: SBMeS can be

used for automotive and safety-critical systems to achieve greater safety. In the e-car

area, safety is one of the most critical parameters.

4. Trade-off between fault-tolerance, reliability, and energy-efficiency: Our proposed

model optimizes the trade-off between fault-tolerance, reliability, and energy-

efficiency in SBMeS to handle multiple tasks and message sets regarding reliability

[20] and energy-efficiency for adaptive TTS (i.e., base frequency tuning and scaling

inside cores and routers).

5. An optimal scheduling algorithm for energy efficiency: Our proposed optimization

method establishes the minimum energy consumption for each slack event by mixed-

integer quadratic programming (MIQP) equations. The MIQP model considers

different parameters (e.g., cores, routers) and decision variables (e.g., slow-down

factors of cores and routers) in the constraints and the objective function.

6. Visualization of meta-schedules: Our MeSViz is proposed for specific visualization

and evaluation of single and multi-schedules on MPSoCs.

7. Memory optimization regarding schedules size: Delta scheduling is used to reduce

and optimize memory usage of schedules and can store a significant number of

schedules based on delta graph generator models [25], [16].

20

In contrast, our approach is an off-line static-scheduling algorithm for determining the

optimal meta-schedules and dynamic frequency scaling in TT MPSoCs and NoCs for

energy-efficiency in safety-critical embedded systems. This work thus develops a DS -

reclamation technique to reduce static and dynamic energy consumption.

1.3. Structure of the thesis

The remainder of the dissertation is structured as follows:

Chapter 2 analyses the literature, related and previous works, basic concepts, and the

current state of the art. In section 2.8, we compare this work with related works in two

tables to clarify the research gap.

Chapter 3 introduces the scheduling model for the adaptive TT and safe and mixed-

criticality systems. Our model supports the static scheduling for TTS and creates specific

data models for physical (hardware), application (logical), and context (scenarios and

events) layers. The general definitions, energy model, and objective function are then

distinguished (e.g., constraints and variables).

Chapter 4 provides a detailed description of our specific SBMeS technique, algorithm,

and developed tool (MeS). The system model and algorithms, architecture, and fault

assumptions are then distinguished.

Chapter 5 presents the techniques for visualization, evaluation, and convergence of

schedules. It presents our specific meta-scheduling visualizing technique and the

developed tool (MeSViz).

Chapter 6 concerns the implementation. In this chapter, we provide information about

the schema model, based on standard XML as an input. The implementation of MeS and

MeSViz and outputs are explained.

Chapter 7 presents the evaluation of the scenarios and models. In this chapter, we provide

different scenarios and use cases for energy-efficiency (cores and communication

network), energy-efficiency with fault-tolerance, and saving memory. In addition, the

results are evaluated and visualized using MeSViz.

Chapter 8 concludes the dissertation and suggests an outlook for future work on SBMeS

on adaptive TT and mixed-criticality systems.

21

22

Chapter 2: Related work and basic concepts

In this section, we begin with basic concepts and review the ideas of related works in the

area of real-time systems, TTS, energy management, scheduling, and visualization; then

briefly introduce our previous works [10, 12, 13]. In heterogeneous embedded systems

(e.g., MPSoC), many elements are used (e.g., CPU, GPU, and NoC) and they must be

designed, developed, and operated to satisfy the reliability and performance requirements

of safety-critical embedded-systems applications. MPSoCs are increasingly popular,

which they are using high computational power and low power consumption embedded

systems.

2.1. Real-time systems

A real-time system must execute concurrent tasks and messages in such a way that all

tasks and messages meet their specified deadlines. Communication and task deadlines are

significant constraints that a scheduling algorithm for RTES must satisfy in addition to

optimizing energy-savings [22].

2.1.1. Embedded real-time systems

In general, opinion about the real-time system is often considered to be implemented

through an embedded system platform [23].

Figure 1. Conceptual difference [23]

In Figure 1, the embedded system and real-time system are strongly correlated, but there

are applications and areas where this correlation is not observed [23]. However, this does

not concern a difference between two different systems, but rather a new vision of the

application of two systems in a single scope. Figure 2 represents the embedded system

situation and the new scope of its additivity.

Figure 2. Current and future trend in an embedded system [23]

Real-Time

Embedded

Embedded Real-Time

23

2.1.1.1. Makespan

In [26], Eitschberger et al. present a scheduling model to balance faults and energy to

maximize the performance in static schedules. However, it is vital to minimize the time

length of a schedule (the so-called makespan [27]): in effect, the duration until all tasks

have finished processing, while integrating fault tolerance techniques. They propose that

one of the recently emerging topics is the problem of minimizing energy consumption by

NoCs [26, 28].

For example, ignoring the possibility of slack recovery is regarded as wasting energy.

Energy consumption is also affected by the frequency scaling of cores and routers. By

increasing the execution time via decreasing the clock frequencies in cores, the length of

the makespan also increases. Fault-tolerance techniques typically result in performance

overhead, which leads to an increase of the makespan.

However, decreasing the clock frequency also decreases energy consumption. This

mechanism leads to a two-variable trade-off decision between performance and energy

consumption, on both cores and routers.

2.1.2. Dependability

One of the most critical non-functional parts of real-time systems is dependability [29],

which is the ability of a real-time system to provide its agreed level of service to its

application [30]. According to [29], the 𝐼𝐸𝐶/𝐼𝐸𝑉1 191 − 02 − 03 has a specific

description: “Dependability is the collective term used to describe the availability

performance and its influencing factors: reliability performance, maintainability

performance and maintenance support performance.” According to [31], the conceptual

structure of dependability comprises three important components, which are faults,

means, and attributes of dependability. In this work, we focus on faults.

2.1.2.1. Mixed-criticality systems

Safety and reliability in mixed-criticality systems (MCSs) (e.g., vehicles, airplanes,

drones) and their standards (e.g., 𝐼𝑆𝑂 26262, 𝐼𝐸𝐶 61508, DO − 178B, DO −

254, and ISO 26262) are the primary focus of many works [32].

However, the current tendency is to increase integration, build safer and more reliable

complex or large embedded systems. These systems requirements commonly refer to

MCSs [33]; that is, including two levels: safety critical (high criticality) and mission-

critical (low criticality). It is crucial for tasks to meet the requirements for criticality levels

[34]. There can be up to five levels of standards [32].

Isakovic et al. [35] explain that physical component designs and interfaces with a specific

computer system should provide a clear design methodology approach, but systems

become more complex primarily when working with heterogeneous systems and

1 International Electrotechnical Commission

24

protocols. However, it is challenging to ensure that the functional properties meet the

system specifications and regulatory guidelines. The authors also offer a mixed-criticality

integration solution based on a TTA for a hybrid system-on-a-chip platform.

The SBMeS algorithm is designed for static scheduling because dynamic scheduling has

more complexity and is typically not amenable to certification.

Our algorithms and tools, used in [12, 13, 36], are extended with support for frequency

scaling in a TT multi-core architecture. This technique can also be used for TTS with

mixed-criticality [19], while meeting requirements for adaptivity, energy efficiency, and

fault-tolerance, as in [25]. For example, SBMeS enables reactions to fault events by pre-

planning for each event and fault, with a recovery strategy via static scheduling. In many

safety-critical real-time systems, fault-tolerance and energy-efficiency are essential

objectives [33].

2.1.3. Adaptivity

The design and development of embedded systems is driven by the constraints of

certification standards [19]. While these standards advocate static resource allocations

[37], adaptivity is also desirable for fault recovery and energy-efficiency [38]

Safety-critical systems are vital and sensitive, and any failure can have a significant effect

on people or cause damage to the environment.

Recent technology trends favor the adoption of multi-core architectures with NoC for

safety-critical applications [39]

In addition, TTNoC [40] and AEthereal [13] effectively support the fault isolation and

predictability requirements of safety-critical systems. Time-triggered control is a valuable

solution for safety-critical systems to manage the complexity and provide analytical

dependability and timing models.

This work addresses adaptivity in TTS by deploying multiple precomputed schedules and

routering between such schedules at runtime.

2.2. Time-triggered systems (TTSs)

According to [17], a real-time system is defined as one in which the correctness of its

behavior depends on computational results as well as the physical time in which these

results are produced concerning the global time base. In time-triggered architectures

(TTA), activities are triggered by the progression of global time.

By dedicating a priori defined bandwidth to TT messages, timely delivery of all messages

is guaranteed.

2.3. Global time base

25

In TTS architectures, activities are triggered by the progression and control of global time

[17].

2.3.1. Time-triggered networks (TTNs)

TTNs (e.g., TTEthernet and FlexRay [41]) are advantageous in safety-critical systems for

managing the complexity of fault-tolerance and analytical dependability models

(TTEthernet is currently under standardization by SAE as 𝐴𝑆6802 [42]) [13]. In addition,

TT architectures in NoCs, such as TTNoC [40] and AEthereal [43], support the fault-

isolation and safety-critical requirements.

In-vehicle network protocols (e.g., FlexRay, Local Interconnect Network (LIN) [44]) use

the TT pattern, the time of which is divided into communication cycles.

2.3.1.1. Messages

Once a task finished, data or an information packet is sent to the next dependent task,

which this packet called message. Each message is scheduled for routing, sending, and

receiving with the timing determined according to the tasks and messages dependency

and to avoid message collisions in path links and routers.

2.3.2. Time-triggered multi-processor system-on-a-chip (MPSoC) and

network-on-a-chip (NoC)

MPSoCs in heterogeneous systems include many elements (e.g., CPU, GPU, Cache,

SRAM, FPGA and NoC) [45]. With latency-sensitive applications running on such

MPSoC platforms, the cores and routers must be designed and operated to satisfy the

performance requirements. DVFS, adaptive routing, and frequency scaling in routers and

links can potentially improve energy efficiency and performance of the NoC.

An MPSoC can be viewed by its physical and logical viewpoints. Physically, the platform

consists of cores interconnected by a NoC.

The message-based services of the NoC enable the abstraction from the internal

implementation details of the cores, which can range from state machines in hardware to

full-scale processors with operating systems and application software.

An application on an MPSoC can be described by a directed acyclic graph (DAG) [46],

where tasks are connected by edges to represent data dependencies. An edge between two

tasks represents a service required by the destination task. For example, the computation

of set values in a “controller task” depends on sensory data from an “I/O task” providing

information about actual and desired values.

Spatial and temporal allocation of the elements from the logical view of the physical

platform is required before execution begins. Tasks are mapped to suitable cores, while

message-based services are mapped to paths and time intervals on the NoC. Likewise,

26

router configurations must be coordinated in such a way that the routing decisions prevent

collisions.

Another advantage of using NoCs is the effective support for multiple clock domains,

which is particularly important for the proposed concept in this work. It is essential to

support the clock domain [47] crossings [48] for the proposed DFS [49] technique to

reduce the system’s power consumption.

NoCs are composed of three main building blocks: links, network interfaces (NI), and

routers. Links serve as a physical connection between cores, routers, and NIs. The NI is

an interface that makes a logical connection between the cores and the network. The

routers send and receive the packets, which are delivered by the other routers or cores

through the NI. Consequently, routers are responsible for sending the packets to the right

destination, using the destination address included in the packet.

NoCs are composed of three main building blocks: links, NI, and routers. More cores

typically means higher power consumption: including more cores thus presents a design

hurdle of architectural complexity and higher energy consumption. For example, the

Kalaray MPPA2-256 [50] comprises 288 cores: 256 computing cores, 16 management

cores, and four quad cores (see Figure 3). Kalray’s MPPA [51] technology addresses

these challenges by combining high-performance cores with low-power processors [52].

Figure 3. Kalray’s MPPA network-on-chip (The 𝑀𝑃𝑃𝐴2® − 256 Bostan2 processor [52])

Many MPSoCs are based on complex communication infrastructures similar to NoCs

(e.g., Samsung Exynos, Multicore DSPs, and many-core Kalray MPPA). Using NoC for

the implementation of the proposed concept is essential as NoCs make the interconnected

elements independent of the clock frequency. More precisely, buffers between different

components can be used as clock segregation boundaries if different frequencies are

Quad

Core

SMS GPIOs DDR3 Quad

Core

Quad

Core

SMS GPIOs DDR3 Quad

Core

P
C

Ie

G
e
n

3

E
th

e
rn

e
t

P
C

Ie

G
e
n

3

E
th

e
rn

e
t

C C C C

C C C C

C C C C

C C C C

27

demanded. Moreover, a routing algorithm is required to route the messages to the right

destination.

In a real-time system [53], the correctness of its behavior depends on the values and the

timing of computational results. Therefore, it is a beneficial solution in safety-critical

systems to manage the complexity of analytical dependability and timing models.

2.3.3. Time-triggered (TT) execution environments

Real-time operating systems (RTOS) are used in embedded systems where time is a vital

parameter and function; also RTOS needs to control and serve many resources

requirement (e.g., core, memory). For example, XtratuM is a hypervisor based on

RTLinux HAL to meet safety-critical real-time systems requirements. These RTOSs or

hypervisors are supported by specific standards for specific use cases (e.g., ARINC

653 for avionics) [54].

Figure 4 shows how the Xtratum [55]/Xoncrete [56] design from the SAFEPOWER

project can be applied, along with the meta-scheduling for the hard-core system [3].

Figure 4. Simplified design flow and meta-scheduler (MeS) integration in SAFEPOWER [3]

2.3.3.1. Tasks

Applications or processes that is running on a core called to task. These tasks require a

schedule for timing and allocation regarding priority, coherency, and/or dependency.

2.3.3.2. Worst-case execution time (WCET)

28

The worst-case execution time (WCET) of a task is pre-estimated or pre-computed as an

input for scheduling. However, this determination is difficult to achieve.

2.3.3.3. Slack

The SSs happen when the system is under loaded, and DS occurs when it finishes faster

or earlier than predicted WCETs. Finally, DS can provide space for other tasks to be

executed [34].

We further note that the execution time variations sometimes leads to DS time [57], which

can be exploited by different levels of WCET and changed without causing a performance

penalty. In this work, we use the slack time in cores to reduce energy consumption.

2.4. Energy management techniques

2.4.1. Clock gating and power gating

Clock gating and power gating are the well-known, general techniques for reducing power

dissipation and energy management in hardware systems. Clock gating with logical

techniques reduce clock power using a circuit to prune the clock tree [58]. Power gating

is designed to shut off the circuit not in use and to increase time delay [59].

2.4.1.1. Dynamic voltage and frequency scaling (DVFS)

One of the most famous and prevalent run-time techniques for improving power

efficiency is DVFS [60]. DVFS techniques are widely used for scaling and optimizing

power [60], providing a solution in which the chip’s voltage-frequency levels are varied

at run-time [15].

In this work, DVFS is used to establish an optimized frequency for each core. The power

efficiency of DVFS is primarily related to the performance of the slack estimation method

[61].

Embedded systems use some well-known, energy-efficient techniques [62], including

DVFS, to improve energy-saving and the power-efficiency of chips at run-time [63].

Bianco et al. [64] analyzed a similar problem, concerning DVFS on NoC, focusing on

single voltage, single frequency, and links working at a single frequency. They considered

only the DVFS related to the data transmission, due to the bit switching activity, and their

simulation results did not consider or include the flit queueing effects and the contentions

due to routing.

Caria et al. [65] show that a combination of fine-tune energy router hardware (akin to

DVFS) and traffic engineering (TE) in the network enables most energy savings. Their

case study suggests that the energy savings of DVFS vary between 25% for highly

utilized networks and 50% for lightly loaded networks.

2.4.1.1.1. Frequency tuning on network-on-chip (NoC)

29

In the literature [66], DVFS is one of the best known energy-efficiency techniques for

improving power efficiency of chips at run-time [15]. We also use DVFS to establish

optimized frequencies for cores and routers.

Chai et al. worked on a combination of execution time, DVFS, slack time, and power

consumption to find energy-efficient schedules with minimized processor frequencies

[67].

An NoC provides the different network interconnection models between processing

elements (PEs) through routers. It can permit hop-by-hop communications between PEs.

To serve and provide higher traffic demands in NoCs, PEs and routers run at higher clock

frequencies. Therefore, “power consumption grows rapidly and limits NoC scalability”

[64].

The use of DVFS to increase power efficiency of the NoC can be implemented on

different levels (i.e., at the router level or the NI level). However, in this work, the NI

serves as a platform for handling DVFS by supporting different schedules provided by

the MeS, making the routers simpler and with low overhead.

2.4.1.1.2. Distributed dynamic voltage and frequency scaling (DVFS)

algorithm at the router and core level

Sharma et al. [68] propose the communication energy technique, similar to the optimal

solution obtained by integer linear programming (ILP), as a low complexity heuristic

mapping algorithm.

However, few platforms can support full stage DVFS at the router and interconnection

level. For example, in 𝑋𝑖𝑙𝑖𝑛𝑥 𝑍𝑌𝑁𝑄 − 7000, the input clock is 100 𝑀𝐻𝑧 and the PL

fabric clocks generated on the software side are equal to 85 𝑀𝐻𝑧 and 170 𝑀𝐻𝑧 [69].

Some simulations and models are proposed as a scalable power-gating technique for

reducing energy consumption. For example, Farrokhbakht et al. [70] worked on a

scalable mapping and routing technique (SMART), which results in SPLASH-2

benchmarks that show it can decrease the static energy and average packet latency of the

NoC network by 27.3% and 49.9%.

2.4.1.1.3. Worst case execution times (WCETs) and distributed dynamic

voltage and frequency scaling (DVFS)

WCET is the maximum execution time of a task, which is pre-estimated or pre-computed

and uses analytical or measurement-based techniques. WCET is an essential input for

scheduling in TTA.

Our approach is driven by certification requirements and is based on an off-line and static-

scheduling algorithm to compute the optimal meta-schedules and dynamic 𝑺𝑫𝑭𝒔 for

30

more energy efficiency. It addresses the DS reclamation scheduling technique to

minimize static and dynamic energy consumption.

In this work, we use slack distribution to achieve power efficiency with scenario-based

schedules containing different 𝑆𝐷𝐹𝑠 for DVFS in both cores and routers.

2.5. Energy management for different types of resources

2.5.1. Network-on-chip (NoC)

NoCs enable scalable communication for connecting several resources within a chip (e.g.,

routers). Energy consumption is primarily by computing (i.e., cores) and communication

(e.g., routers) [71] and can contribute considerably to total chip power. For example, on-

chip routers and links consume up to 18% in the Intel SCC and 20% in the Alpha

21364 processor and communication power takes 33% in RAW architectures [14].

Sheikh et al. investigated the combined optimization of performance, energy, and

temperature (PET) [72] and propose an optimization framework. They assessed multiple

cores for frequency switching.

Jingcao Hu et al. [73] used static schedules for communication and computation of tasks

on heterogeneous NoC architectures for multimedia. Their algorithm achieved

approximately 44% energy on average, compared to the standard earliest-deadline-first

scheduler.

Various power saving techniques have emerged for NoCs at system-, architecture-, and

circuit-level [74]. Experimental results indicate that slack algorithms can reduce energy

consumption by 20~50% [75] more than existing DVFS algorithms [61].

In [76], the experimental results indicate that a dynamic 𝑆𝐷𝐹, on average, has 10%

energy gains over static models.

In [73], the authors provide energy-efficient scheduling with static schedules for both

communication activities and computational tasks in heterogeneous NoC architectures,

under real-time systems constraints and for a multimedia application.

The algorithm achieves a 44% energy reduction, on average, compared to the standard

earliest-deadline-first scheduler. In addition, scenario-based scheduling methods are

presented.

In [77], the authors identify a relationship between execution time, DVFS, slack, and

energy consumption, achieving energy-efficient scheduling with lower processor

frequencies. They report that 28% ∼ 36% of the total chip power consumption depends

on NoC energy consumption (e.g., on-chip routers and links).

In [78], it is observed that the low power technique reduces energy consumption in an

average NoC by 49%, with negligible effects on network bandwidth and delays.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jingcao%20Hu.QT.&newsearch=true

31

In [79], the authors used voltage/frequency scaling (VFS) and propose a power-efficient

network calculus-based technique to minimize the power consumption of the NoC, which

can save up to 50% of the total power consumption.

Han et al. [80] present a low power methodology and routing algorithm for temperature

to achieve an ultra-low-power NoCs. The experimental results demonstrate an average

power reduction of 36% over 21 applications.

Li et al. [81] propose a two-step solution for the problem of energy-efficient mapping and

scheduling in NoCs. They used quadratic binary programming to minimize the

communication energy and a genetic algorithm to minimize the overall system energy

consumption.

2.5.2. Processor

Lee et al. [61] [82] worked on a method of DVFS-enabled multi-cores to reduce energy

consumption by executing the tasks in parallel on a sufficient number of cores and

assigning the lowest possible frequencies. Their scheme saves up to 67% of the energy

when executing the task on a single core. However, it does not support scenario-based

scheduling and communication frequency scaling.

Related work indicates that slack-algorithms for DVFS [61] are valuable methods of

reducing energy consumption by 20~50% [75]. In [76], the results indicate that a

dynamic 𝑠𝑙𝑜𝑤𝑑𝑜𝑤𝑛 for cores, on average, results in 10% energy gains over static

models. In [13], the results show that a DS algorithm for cores, compared to the SS,

produces a maximum of 64.4% energy savings in a single schedule and 41.61% energy

savings on average.

Hangsheng et al. found that the communication interconnect can consume up to 36% of

the power in an MPSoC [9].

Also, compared to the related works in case of energy, we use optimization techniques

for adaptive routing and frequency scaling in cores, routers, and links which can

potentially improve MPSoCs’ energy-efficient performance. The potential of DVFS for

the router is interesting and our SBMeS could extended for this.

2.5.3. Task procrastination and slack reclamation

Using reclaim the SS or DS in traditional real-time systems is not a new practice (e.g.,

Sprunt et al. [83], Strosnider et al. [84]).

Chatterjee et al. [85] take the slack time [76] of tasks into account to improve deadline

satisfaction and reduce energy consumption. They propose an algorithm for fault-tolerant

resource allocation in real-time dynamic scenarios. On average, they reduced energy

consumption by 29.1% and 6.7%, compared to previous work.

32

In [76], static and dynamic task procrastination is introduced as a slack-reclamation

technique for energy reduction over the static task 𝑆𝐷𝐹. Their simulation found that

dynamic 𝑆𝐷𝐹 results on an average of 10% energy gains over the static 𝑆𝐷𝐹.

Dynamic procrastination reduces idle energy consumption by 15%, while meeting all

timing requirements. Mahapatra et al. [86] propose an energy-efficient slack distribution

technique for multimode distributed real-time systems. Their work provides a network

traffic monitoring technique and a slack distribution mechanism to achieve power

efficiency. A co-simulation framework was used to evaluate their proposed technique.

The relationship between execution time and energy consumption for energy-efficient

scheduling is presented in sections 3.9 and 3.12, and this shows how DVFS is used for

slack times between tasks to save energy with lower processor frequencies.

2.6. Scheduling for time-triggered systems (TTS)

Message and task scheduling are problems for MPSoCs that are solved using TT

scheduling. In task scheduling, the scheduler must decide when and where a task is to be

executed, using each cove in every time slot.

The static TT schedule determines that TT messages through which link must be sent over

the network at the predefined timing, deadlines and how the messages reach their

destination before a global timeout.

In this work, message and task scheduling are related, and we focus on these aspects of

the system because these problems and their associated constraints (energy-efficient,

reliability, and fault) are an interesting component of previous associated works, which

have produced valuable and positive results [85, 87].

2.6.1. Algorithms for static

Nowadays, many different techniques, algorithm, and methods are using for synthesis and

generating the TT schedules (e.g., GA, constraint programming (CP) [88] ILP, MIQP,

and satisfiability modulo theory [89]).

In static or pre-runtime scheduling, a feasible schedule for a set of tasks is calculated off-

line and pre-compiled [17] which was generated before run-time. The scheduling

technique has to guaranty all deadlines, considering the resource, precedence,

synchronization requirements for all tasks and conditions [17]. In scheduling the

precedence relations between the tasks and messages, executing in the different nodes

and events can be depicted in the form of a precedence graph [17]. For scheduling a

problem, “a solution can be detected as a finding a path, a feasible schedule, in a search

tree by applying a search strategy [17]” Figure 5.

33

Figure 5. A search tree for time slot [17]

Static-scheduling is a reliable solution for robust and timely systems, especially in TTS.

Their scheduling problem was established by formulating a mixed-integer linear

programming (MILP) problem.

Murshed et al. [90] have provided a static message-based scheduling approach that

guarantees the absence of collisions in message routing for a single task per core. Their

solution of the MILP problem is the allocation of tasks to cores and scheduling the

messages between these allocated tasks while minimizing the critical path delay.

One of the Boolean problem [87] in scheduling is a synthesis of TT schedules; namely,

when a schedule calls the correct schedule, it must meet all its requirements, otherwise it

is incorrect. However, the other problem relates to the quality definition, with finding,

choosing, and rating high-quality schedules being an interesting problem for new

research. However, the “quality” is a complex and varied concept that can change quickly,

according to context.

Wang et al. [91] worked on heuristic static task scheduling for performance yield

maximization in MPSoC. This assigns tasks to cores, working from the root node to the

end node of the task graph until all tasks are scheduled.

Mirzoyan et al. [92] worked on heuristic variation-aware task scheduling methods, using

data flow graphs. This was limited to real-time streaming applications, with a

synchronous data flow graph (SDFG) [93] model that does not support fault-tolerant

and energy-efficient.

2.6.1.1. Static scheduling for energy efficiency

Energy efficiency, energy management, and energy reduction are essential issues in

embedded systems. Many real-time systems must adapt to run-time critical events, such

as faults inside or outside the system and environmental conditions.

The authors of [22] worked on an algorithm for task scheduling and time constraints

where task deadlines were satisfied, saving more energy without degrading performance.

The authors of [73] developed energy-aware scheduling, search, and repair, with their

model guaranteeing the prevention of missed task deadlines. This is also considered in

this work.

2.6.1.2. Static scheduling for reliability

34

The use of the TT scheduling method for embedded systems is compelling because it

provides predictability and greater safety and reliability. Some related mode switched

scheduling techniques are proposed in the literature (e.g., Burns and Davis [33], Hu et al.

[34], Baruah et al. [94], Burns and Baruah [95], and Ekberg and Yi [96]).

Guy Avni et al. [87] worked on TT schedules for switched networks with faulty links.

They addressed the problem of the resistant schedule and propose how one can use the

fixed error-recovery protocol to guarantee messages arrive at their destinations, regardless

of which links failed. They focused on two TT scheduling limitations. The first is the

computational constraints and variables complexity of synthesizing, named an NP-

complete problem [97].

2.6.2. Meta-scheduling (MeS) and mode changes

Most TT systems and TTN schedules are generated offline (static scheduling), but when

the application or hardware model changes, most schedules cannot support events and

their recent change. For example, since the systems using TTN or TTS are usually safety-

critical, events and changes caused by the link, router, and core failures complicate

scheduling tasks and messages [98].

Quasi-static scheduling supports adaptive behaviors to reduce system costs when a

limited number of predefined cases in scenario-based systems occur. The quasi-static

scheduling technique is restricted to dynamic reactions and activities, while having very

limited scheduling overhead.

Most of the research on meta-scheduling is conducted for enterprise grids, clouds, and

data centers; for example, GridWay,2 community scheduler frameworks,3 Moab cluster

suite,4 Maui cluster scheduler,5 DIOGENES, and synfiniWay's meta-scheduler [11].

However, Jung et al. [99] worked on meta-scheduling for green computing to reduce

energy consumption and thus reduce CO2 emissions into the atmosphere. This approach

is known as “GreenMACC.” Following many rule changes in the EU concerning green

and pure energies, and aimed to benefit the environment by reducing fossil fuels and

controlling greenhouse gas emissions (e.g., CO2 [100]). To this end, for example, BMW,

Bosch, and Continental invested in battery cell [101] and most carmakers plan to invest

heavily in research and development in the domain of e-cars, which depends significantly

on embedded systems [4].

In [102], Fohler presents a method for supporting schedule changes based on operational

modes, by switching and traversing static-schedules in a schedule status tree.

Jung et al. [103] worked on synchronous data flow, which is commonly used in signal

processing or streaming applications. Their model can be used for dynamic behavior

2 http://www.gridway.org
3 http://toolkit.globus.org/toolkit/docs/4.0/contributions/csf/
4 http://www.adaptivecomputing.com/
5 http://www.adaptivecomputing.com/products/maui/

35

changes and classified as a multi-mode dataflow model. The proposed technique

minimizes the number of required processors for multiprocessor scheduling by

considering task migration between modes. The focus is on minimization of required

resources, but not the parameterization of resources, such as frequency scaling.

2.6.3. Optimization techniques for scheduling

The basic structure of the scheduling technique for TT communication in NoCs is built

by formulating an MILP problem, as in [90], and extended to MIQP in this work. It

consists of constants, decision variables, constraints, and an objective function, which are

modeled by a set of MIQP-compatible equations. The MILP and MIQP problems are

solved using the IBM optimizer.

Tariq et al. [46] investigated the problem of scheduling and energy-aware mapping on a

heterogeneous NoC base.

Anup Das et al. [104] propose an ILP to reduce communication energy, fault-tolerant

migration overhead, and tasks remapping.

Ishak et al. [105] worked on nonlinear programming (NLP) for computing and

identifying the optimal frequencies for heterogeneous NoC-based MPSoCs for all tasks

and communication links for an ILP- based algorithm. Their objective is to assign an

optimal frequency for each task and each message which the total energy consumption of

all the tasks and messages is minimized.

2.6.3.1. Quadratic Optimization

In [106], quadratic optimization (QP) is described as an essential mathematical area of

NLP. It is used in most problems, including those in planning, scheduling, economics,

engineering, and routing.

2.6.3.2. Mixed integer quadratic programming (MIQP)

In [107], MIQP is used to solve scheduling problems. Here, the objective function is

quadratic, concerning the integer and continuous variables, while the constraints are linear

with respect to the variables of both types.

2.6.3.3. Genetic algorithm (GA) and optimization techniques

Li et al. [81] worked on a genetic algorithm (GA) to achieve near-optimal voltage and

frequency assignments to address the problem of energy-efficient contention-aware

application mapping and scheduling in NoCs. Their reported results indicate that jointly

utilizing dynamic voltage scaling for processors and frequency tuning NoC links provides

excellent potential for overall energy reduction in MPSoCs and overall system energy

consumption is significantly reduced.

Optimum solutions provide better solutions than feasible answers or other methods, such

as GAs. Majd et al. [108] used GAs as they believed these to better locate a near optimal

36

solution than a list schedule. They report that many existing approaches do not consider

communication costs when applying GAs to MPSoC scheduling problems. In contrast,

we do consider the communication costs. To handle the communication delays between

processors, Majd et al. used a combination of GA and the imperialist competitive

algorithm [109], while we use MIQP together with the above mentioned linearization

method.

At the cost of higher runtime, the MIQP, MILP, and MIP methods find better solutions

than heuristics such as GAs [110].

2.7. Scenario-based scheduling in event-triggered systems

Many published articles concern task scheduling with limited resources [21]. However,

few works focus on scenario-based scheduling.

SBMeS is a chain solution for different scenarios of each event in the system (e.g., fault,

slack), providing unique schedules and processing functions at the desired throughput.

Scenario-based schedule chains are required to computationally process large volumes of

constraints and variables, sometimes within very short periods, to facilitate real-time

application needs.

Using SBMeS to provide the desired throughput of reliable schedules may lead to the

violation or reduction of other services (e.g., frequency scaling). Hence, in an embedded

system achieving deadline, safety and reliability of ordered schedules are of paramount

importance. Therefore, fault-tolerance, reliability, and energy-efficiency are the three

most desired features of MPSoCs, allowing the scenario-based scheduled system to adapt

to changes in the environment.

The SBMeS model is based on per-core and router DVFS with multiple frequency supply

networks. We use DVFS on both cores and routers and propose the use of non-minimal

path adaptive routing [111] to balance network traffic. Specifically, the MeS scheduler

regularly tunes the operation frequency of the routers and the cores, based on the

scheduling-scenario and NoC workload. In addition, the MeS takes into consideration the

router and cores utilization, in conjunction with the tasks slack allowance.

SBMeS requires attention to avoid cascading fault-events collision and to make valuable

trade-offs between model constraints (e.g., fault, energy) and event controller and system

failure protection in schedules, especially for the real-time operating system and software

applications across the TT embedded-system that cooperate with the critical systems (e.g.,

aerospace, medical, and automotive).

In [112], the authors introduce quasi-static schedules of data flow graphs in the presence

of limited channel capacities. However, the results do not guarantee the preservation of

deadlock freedom.

37

In [113], Wei et al. worked on fault-tolerance in hard real-time systems and showed how

quasi-static task scheduling algorithms can support fault-tolerance and energy efficiency

for hard real-time systems.

Most existing works address the issue of energy optimization, with separate consideration

of the dynamic or SS, quasi-static scheduling for single cores in the context of DVS, DFS,

and DVFS.

This work proposes the SBMeS method, which is more flexible and extendable than other

quasi-static techniques for a wide range of applications (e.g., energy minimization of real-

time multitasking systems). This technique can exploit and integrate other scheduling

problems in the quasi-static application domain. The performance is superior to that

obtained by the previously proposed dynamic and scenario-based approaches.

This work develops an energy-efficient scheduling algorithm for DS and slowdown

factors in multi scenario-based systems for both cores, specifically using SBMeS for

static scheduling on adaptive TT MPSoC and NoC systems.

2.7.1. Reliability and redundancy in scenario-based meta-scheduling

(SBMeS)

In [29], reliability is defined as the conjunction of accurate service delivery, “up-time.”

In other words, reliability in a real-time system is a timing operation and the interval of

time depends on the system design.

In TT networks, the application layer supports redundancy failures [114]. SBMeS can

support multi-link and multi-topology for redundancy and non-collision messaging

schedules. Here, a task and message should be scheduled on different cores and paths,

and the defined core and paths should be disabled and removed from operational tables

to prevent system crash, abnormal behavior, and common-mode failures. These rules and

solutions are simplistic and used in problem formulae.

Huang et al. [115] worked on scheduling for energy-efficient and mixed-criticality. They

use DVFS to speed up and slow down tasks [28].

2.7.2. Scenario-based meta-scheduling (SBMeS) for reconfigurable systems

Reconfigurable computing and systems are considered a hi-tech, effective solution

combining the flexibility of traditional processors and systems with the high processing

efficiency of ASIC. A reconfigurable architecture can meet the requirements of different

task processes through different system structures, using reconfigurable devices [116]. It

is vital that, during hardware reconfiguration, other hardware tasks continue to work

without interruption. On the other hand, since network topology can change intentionally

(e.g., reconfiguration purposes) unintentionally failures (e.g., core or router) these

changes are not non-maskable.

38

Our proposed SBMeS method can use reconfigurable processor architecture [117] when

the platform model begins to change during the runtime.

Cai et al. [116] worked on a hybrid-scheduling algorithm and technique for reconfigurable

processor architecture and grouping tasks, devices, and processors to general and

reconfigurable elements. SBMeS compare to their work can use in all reconfigurable

processor architecture without any dependency on system design. This means that

hardware and software changes can be scheduled without harmful effects on system

safety or reliability.

2.7.3. Scenario-based meta-scheduling (SBMeS) for robust systems

A robust system can work well even when unexpected (reasonable) platform changes

occur. SBMeS can be used in robust-systems to predict environmental change in terms of

event context and scenarios. It can also control small disturbances in the environment

which can cause even small system errors. Hence, SBMeS can serve robustness and

predictability needs as two “universal challenges” in the domain of embedded systems

design.

Eitschberger [28] worked on “Energy-efficient and Fault-tolerant Scheduling for Many-

cores and Grids.” His primary objective was integrating fault-tolerance into schedules and

minimizing energy consumption using DVFS based on tasks. We addressed reuse and

extended some parts of his model (e.g., energy, fault) to task and communication

scheduling. We also added DVFS to communication and integrated them into SBMeS.

2.8. Overview of scheduling-related works

An overview of related work on scheduling is presented in Table 1, summarizing the

previous works and techniques covered in this work.

39

Table 1. An overview of related works compared to scenario-based meta-scheduling (SBMeS)

Related

work

Techniques Requirements

M
et

a,
 S

u
p

er
,
h
y
b

ri
d

 s
ch

ed
u

li
n

g

V
is

u
al

iz
at

io
n

C
o

re
 F

au
lt

Energy Optimization
Memory

management
Platform

M
P

S
o
C

R
ea

l-
ti

m
e

sy
st

em

F
au

lt
-t

o
le

ra
n

t

E
n

er
g

y
-e

ff
ic

ie
n

t

M
ix

ed
-c

ri
ti

ca
li

ty

D
V

F
S

C
o

re
s

/
T

as
k

s

R

o
u

te
rs

M
IL

P
/

G
A

/
IL

P

M
IQ

P

M
es

sa
g
es

T
as

k
s

T
im

e-
T

ri
g
g

er
ed

 s
y

st
em

N
o

C

Eitschberger

[28]
√ - √ √ √ - √ - - - - - √ - √ √ -

Cai et al.
[116]

√ - √ - - - √ - - - - - √ - - - -

Murshed

[90]
- - - - - - √ - - - √ √ √ √ - - -

Wang et al.
[91]

√ - - - − - √ - - - - - √ √ - - -

J. Hu et al.

[73]
- - - - √ √ √ - - - - √ √ √ - √ -

Tariq et al.
[46]

- - - √ √ √ √ - - - - √ √ √ - √ -

Guy Avni et

al. [87]
- - - - - - √ - - - √ - - √ √ - -

Jung et al.
[103]

√ - - - - - √ - - - - √ √ √ - √ -

Fohler [102] √ - - - - - √ - - - √ - - √ √ - -

Anup Das et

al. [104]
√ - √ √ √ √ √ - - - - - √ √ √ √ -

Ishak et al.

[105]
- - - √ √ √ √ - - - √ √ √ - √ -

Li et al. [81] √ - - √ √ √ √ - - - - √ √ √ - √ -

Majd et al.

[108]
- - - - √ √ √ - - - - √ √ - - - -

Huang et al.

[115]
- - - √ √ - - - - - - - - √ − √ √

J. Falk et al.
[112]

√ - - - - - √ - - - - - √ - - - -

Maleki et al.

[25]
− - √ √ √ - √ - √ - √ √ − √ √ √ √

This Work √ √ √ √ √ √ - √ √ √ √ √ √ √ √ √ √

2.9. Summary

In summary, the existing work on SBMeS and low power and energy-efficient

scheduling focuses on different models, methods, and architectures to the current study;

for example, with or without DVFS or dynamic power management capabilities and

attempting to dynamically or statically manipulate the task execution slacks to exploit

them.

While our work is related to [73], we cover not only SS time but also support DS time

and scenario-based scheduling. We use slack time of tasks to calculate the best slowdown

factor for the communication and computation to maximize energy efficiency

40

2.10. Visualization of schedules

To better understand the complex schedule results, developers and system designers need

abstract graphical visualizations of their schedules. Effective evaluation and validation

methods and tools for tracing and viewing schedule outputs save time and reduce costs.

An overview of the existing tools and a short overview of related work is given in Table

2. Most focus on simulations to generate the visualizations [7]. Some tools, such as Ghost,

FORTISSIMO, ARTIST, and RTSSim, support neither shared resources nor multiple

cores, which are both necessary features in adaptive TT MPSoC and NoC [7].

Table 2. Overview of existing real-time visualizations tools [7]

Project

S
im

u
la

ti
o

n

 V
is

u
a

li
za

ti
o

n

 "
li

v
e
"

si
m

u
la

ti
o

n

 S
h

a
r
e
d

r
e
so

u
r
ce

s

 M
u

lt
ip

le

C
o

r
e
s

 S
p

o
ra

d
ic

ta
sk

s

 O
p

e
n

-s
o

u
rc

e

 P
r
o
g

ra
m

m
in

g
 L

a
n

g
u

a
g

e
s

Alea2 _ √ √ _ √ √ √ java

ARTISST √ √ _ _ _ √ √ C++

Cheddar √ √ _ √ √ √ √ Ada

FORTISSIMO √ _ _ _ √ √ √ C++

gltraceviz _ √ _ √ _ √ √ C++

CHOST √ √ _ _ _ √ _ C

Jedule _ _ _ √ √ √ java

MAST √ √ _ √ √ √ √ Ada

Paje _ √ _ √ √ √ √ Objective C

Realtss √ √ _ √ _ _ √ TCL

RTsim √ √ _ √ √ _ _ 𝑢𝑛𝑘𝑛𝑜𝑤𝑛

RTSIM √ √ _ √ √ √ √ C++

RTISSim √ √ _ √ _ √ _ C

Schesim √ √ _ √ √ √ √ Ruby

STORM √ √ _ √ √ √ √ java

STRESS √ √ _ √ √ √ _ C

ViTE _ √ _ √ √ √ √ C++

VizzScheduler √ √ √ _ √ _ _ java

MeSViz - √ - √ √ √ √ C++

In this work, MeSViz is designed and implemented for visualization schedules according

to adaptive TT, MPSoC, NoC, and real-time requirements.

41

42

Chapter 3: System model

The problem of scheduling TT communication in NoCs is discussed in this section. The

scheduling problem distinguishes two models; namely, a physical model and a logical

model. The physical model comprises the on-chip resources, including the cores, the

routers, and their connectivity, via the NoC. The logical model defines tasks and their

dependencies based on exchanged messages.

3.1. Overview of the models

In this work, four models are used to design a comfortable, fast, and accurate scheduling

model.

The inputs models for SBMeS are the application model (AM), physical model (PM),

schedule model (SM), and context model (CM). AM has constants of the application (e.g.,

number of tasks, WCET of each task, precedence constraints). PM has constants of the

platform (e.g., number of nodes, links between nodes). SM has values for decision

variables (e.g., allocation to a node, start time of execution); and CM has fault and events

details (e.g., event type, event execution time).

In the following section, we briefly describe MeS, which optimizes the placement of tasks

and messages to optimize execution times and injection times. MeS is improved by

adding the new optimization model described in section 6.3.

1. Dependability requirements covered by MeS for scenarios concern detecting,

isolating, or mitigating errors and transient physical problems (e.g., core fault

technique in the section 4.6) that occur in systems or schedules.

2. Timing requirements covered by MeS concern time constraints, execution time

determinism, predictability, composability, and flexible worst-case response for slack

time by static analysis.

3. Independence of network topology: the MeS scheduling and routing method is

independent of the hardware platform and can cover the topology of different networks

(e.g., mesh, direct network, indirect network, balanced tree).

3.2. Input models for a meta-scheduler (MeS)

3.2.1. The physical model (PM)

The PM comprises the physical dependencies at the hardware layer. Figure 6 shows a

platform example and describes the nodes and links the priorities, dependencies, and

hierarchy that the system designer uses to shape the PM section of the input file.

43

RTR 1 RTR 2

CRS 0 CRS 1

CRS 2

CRS 3

CRS 4

L0

L1

L2

L3

L4L5

Figure 6. Conceptual physical model (PM)

Figure 7. General physical model (PM) schema

The PM has two main elements: nodes and links. Figure 7 highlights that each element

contains specific attributes with built-in derived type (e.g., the node contains an ID, type

(router or core) and frequency and the link contains an ID from and to the node).

3.2.2. The application model (AM)

The AM concerns application dependencies at the software layer. It presents the task and

message priorities, dependencies, and hierarchy that the system designer uses to shape

the AM section.

PlatformModel

@ Attributes

Node

Node Type

Link

@ Attributes

Type xs:int

@ TSDF

Type xs:int

@ Deadline

Type xs:int

@ max_energy

Type xs:int

@ max_energy

Type xs:int

@ injection_time

Type xs:int

@ node_ID

44

Figure 8. General application model (AM) schema

The AM has two main elements: tasks and messages. Figure 8 highlights that each element

contains specific attributes with built-in derived types (e.g., task contains an ID, WCET,

start time, allocation, min and max energy, deadline, and 𝑆𝐷𝐹, and message contains a

message ID, sender and receiver ID, 𝑆𝐷𝐹).

3.2.3. The context model (CM)

CM concerns the possible scenarios in the system management layer and can identify

when single or multi faults and events occurred. The CM describes the faults and events

for each element in the PM and the AM, including priorities, dependencies, timing, and

hierarchy. CM has three main elements: slack, energy, and fault. Figure 9 shows that each

element contains specific attributes with built-in derived type (e.g., slack event contains

the new execution time and related task ID, energy event contains energy level, and fault

Application

Model

Task

Hop Path

Message

@ Attributes

@ Attributes

Type xs:int

@ TSDF

Type xs:int

@ Deadline

Type xs:int

@ min_energy

Type xs:int

@ max_energy

Type xs:int

@ alloc

Type Timing

@ Start_time

Type xs:int

@ WCE

Type xs:int

@ ID

Type xs:int

Type xs:int

@ Deadline

Type xs:int

@ injection_time

Type xs:int

@ min_energy

Type xs:int

@ node_ID

Type xs:int

@ MSDF

@ min_energy

@ Attributes

45

including node, link, and core fault, which they are represented by a related object ID e.g.,

link ID).

In this work slack, fault and energy are used as input scenarios in the CM, which is

covered by the MeS.

Figure 9. General context model (CM) schema

3.2.4. The schedule model (SM)

MeS stores all generated schedules information in a schedule tree. Each schedule is saved

in one node. These elements are used as input data in the MeSViz visualization.

The 𝑆𝑀, as shown in Figure 10, contains specific data structures, which are the PM, AM,

and CM.

@ Attributes

SlackEvent

Fault

EnergyEvent

Type xs:int

@ Task

@ NewExecutionTime

 @ Attributes

Link

Fault

Node

Fault

Core

Context

Model

Type EnergyLevelType

@ Energy_Level

Type Fault Type

@ Type

@ Attributes

Type xs:int

Type xs:int

Type xs:int

@ Attributes

@ Attributes

@ Attributes

@ Node ID

@ LinkID

@ CoreID

46

Figure 10. Meta-scheduler (MeS) data structure schema model

3.3. Modelling of the optimization problem

This work provides an extended model of that used in [12], [13], and [16], and in the

following, we present the new respective parameters.

It is essential to model the relationships between physical, logical, and application

constraints, without topology dependencies, along with the resulting impact on

performance. System optimization is the process of utilizing these models to search for

optimum or feasible solutions that best match the physical, logical, and application

constraints of the implementation. For a given implementation method, the physical

constraints characterize architectural aspects; but in our model, these features are free of

network topology. e.g., one of the physical constraints facing the implementation of

interconnection networks is the available links between two nodes.

3.4. Choice of optimization technique

Effects of each scheduling algorithms and techniques (e.g. Mathematical, Artificial

Intelligence, Scheduling Heuristics, Neighborhood search [6]) on systems have to be

analyzed, understood and defined where a failure would lead to severe consequences [7].

For instance, we can use the popular MILP, MIQP, or quadratically constrained quadratic

program (QCQP)-based optimization [115] and mixed-integer quadratically-constrained

quadratic program (MIQCQP) [118], as our objective function by default.

A quadratic objective function and equations with linear constraints in a MIQP problem

are included. Also, some of the variables in the equations are constrained to other values,

e.g., integer values [119]. MIQP is a well-known NP-hard problem [120]. Some optimizer

tools, such as CPLEX, MATLAB, and Gurobi can help to speed up the computation

process in MIQP problem-solving.

This work differs from existing and previous works in three important aspects. First, we

address the problem of both task mapping and task scheduling. Second, we work and

present a model, where DVFS for cores and frequency tuning for NoC routers can be

combined together for achieving optimal system energy consumption; therefore, the

communication and/or computation dynamic and static slacks of tasks and messages can

be shared and distributed efficiently and optimally to achieve more energy saving via

overall energy reduction. Third, using SBMeS technique to solve cores crash and

Scheduling

Model

Constraints

@ Attributes

Platform Model

Context Model

ApplicationModel

https://en.wikipedia.org/wiki/Gurobi

47

controlling their action on system topology, schedules, and energy-efficient is the

particular goal and challenge of this work.

3.5. Static scenario-based meta-scheduling (SBMeS) and mapping policy

Our static-scheduling policies are designed for fault-control and to improve energy-

efficiency on two parallel levels: the first level is the mapping of resources (e.g., cores to

tasks, routers, and paths to messages) and the second uses 𝑆𝐷𝐹𝑠 for frequency tuning in

both cores and routers. In addition, using SBMeS and injecting to the static scheduling

system dynamic slack for each task and faults for each core can create the full range of

optimized schedules for energy consumption’. Figure 11 shows the basic structure of our

SBMeS systems.

Scheduling

NORMAL STATE

Calculate main Schedule

No

Context State

entry / New Context

do / Select new Tables

exit /

Yes

Compile schedules

NO

Final state

Yes

event

happened

All State

checked

Initial state

Figure 11. The basic model of meta-scheduling (MeS)

48

3.6. Decision variables, constants, and constraints

In this part, the constraints and variables used in CPLEX for SBMeS are introduced.

3.7. Definitions

For an MeS solution, one must design a scenario and define decision variables, constants,

and algorithms. In this work, most of the decision variables are common between case

studies, where they are used as input control parameters. MeS must allocate, build, and

calculate connectivity and dependencies between cores, router, tasks, messages, hops, and

events to generate a Gantt map and graph mapping (e.g., Table 3).

Table 3. Overview of input table [90]

Domain
Constant

name
Type Description

PM

𝑁𝑐𝑟𝑠 ℕ Number of cores

𝑁𝑟𝑡𝑟 ℕ Number of routers

𝑁𝑛𝑜𝑑𝑒 𝑁𝑐𝑟𝑠 + 𝑁𝑟𝑡𝑟 ∈ N Numbers of nodes

𝐴𝐿𝐿𝑂𝐶
[

 𝑎𝑙𝑙𝑜𝑐1

⋮
⋮

𝑎𝑙𝑙𝑜𝑐𝑘

] ∈ {1, … , |𝐶𝑅𝑆|}𝑘

𝑘 = |𝑇𝑆𝐾|

Allocation of tasks/tasks to cores

(also routers, since one core

connected to one router)

𝐻𝑂𝑃𝑆
[

hops1

⋮
⋮

ℎ𝑜𝑝𝑠𝑛

] ∈ {1, … , 𝑀𝑎𝑥𝐻𝑜𝑝}𝑛

𝑛 = |𝑀𝑆𝐺|

Number of hops for each message

𝑃𝑎𝑡ℎ [

𝑝11 ⋯ 𝑝1𝑛𝑟

⋮ ⋱ ⋮
𝑝𝑛𝑚1 ⋯ 𝑝𝑛𝑚𝑛𝑟

] ∈ {1,2, … , 𝑛𝑟}

Each row is the path of a

message, the maximum number

of hops (columns) given by the

number of routers

𝑁𝑡𝑠𝑘 ℕ Number of tasks

AM

𝑁𝑚𝑠𝑔 ℕ Number of messages

WECT/ET [

𝑒𝑡1

⋮
𝑒𝑡𝑛𝑗

] ∈ ℕ𝑛𝑗 Task worst case execution time

𝑀𝐷
[

𝑚𝑑1

⋮
⋮

mdn

] ∈ {1, … , 𝑀𝑎𝑥}𝑛 | 𝑛

= |𝑀𝑆𝐺|

Duration of message transmission

(depending on message length)

𝑆𝑅𝐶 [

𝑠1

⋮
𝑠𝑛𝑚

] ∈ {1,2, … , 𝑛𝑗}
𝑛𝑚

 Source task of messages

𝐷𝐸𝑆𝑇 [

𝑑11 ⋯ 𝑑1𝑛𝑗

⋮ ⋱ ⋮
𝑑𝑛𝑚1 ⋯ 𝑑𝑛𝑚𝑛𝑗

] , 𝑑𝑖𝑗 ∈ {0,1} Destination task of messages

𝐶𝑂𝑁 [

𝑐11 ⋯ 𝑐1𝑛𝑟

⋮ ⋱ ⋮
𝑐𝑛𝑟1 ⋯ 𝑐𝑛𝑟𝑛𝑟

] , 𝑐𝑖𝑗 ∈ {0,1} Connectivity of routers

𝑇𝑆𝐷𝐹

[

𝑡𝑠𝑑𝑓1

⋮
⋮

𝑡𝑠𝑑𝑓𝑘

] ∈ {𝑡𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑡𝑠𝑑𝑓𝑚𝑎𝑥}𝑘

𝑆𝐷𝐹 of all tasks

49

𝑘 = |𝑇𝑆𝐾|, 𝑡𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1

𝑀𝑆𝐷𝐹
[

𝑚𝑠𝑑𝑓1

⋮
⋮

𝑚𝑠𝑑𝑓𝑛

] ∈ {𝑚𝑠𝑑𝑓𝑚𝑖𝑛 , … , 𝑚𝑠𝑑𝑓𝑚𝑎𝑥}𝑛

𝑛 = |𝑀𝑆𝐺|, 𝑚𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1

𝑆𝐷𝐹 of all messages

SM 𝑆𝑆𝑀 𝑠𝑚 ∈ SSM set of all scheduling models

The following definitions are used to describe our optimizations model:

𝐶𝑅𝑆: the set of cores (i.e., execution nodes of the platform)

𝑅𝑇𝑅; the set of routers (i.e., message forwarders of the platform)

𝑇𝑆𝐾: the set of tasks to be executed

𝑀𝑆𝐺: the set of messages to be sent, from all tasks

𝑀𝑆𝐺𝐼𝑁(𝑡): the set of input messages of a task 𝑡

𝑀𝑆𝐺𝑂𝑈𝑇(𝑡): the set of output messages of a task 𝑡

𝑒𝑡(𝑡): the execution time of a task 𝑡

𝐹𝐿𝑇: the set of faults to be handled

𝑚𝑑(𝑚): the message transmission duration of message 𝑚 from node A to B. 𝑚𝑑(𝑚) is

equivalent to the size of the message 𝑚. Assuming that there are hops(m) intermediate

nodes between the source and destination of 𝑚, the total message duration becomes the

following:

𝑚𝑑𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑(𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (1)

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚): the time at which the sending of a message m began

𝑓: clock frequency, with fmax being the maximum clock frequency and fsel being the

selected clock frequency:

𝑓𝑠𝑒𝑙 ≤ 𝑓𝑚𝑎𝑥 (2)

3.7.1. Collision avoidance constraint

These constraints ensure that only one message is transmitted for any link between two

cores at a given point in time. “A message can visit the link between two cores, A and B,

only if there is a direct connection between them. Each core or router, must receive only

one message at a specific time from its directly connected core [24]”. If a certain link

must transmit more than one message, these messages should be sent at disjointed time

intervals.

This work introduces 𝑆𝐷𝐹 for both tasks and messages, which has a direct effect on the

message collision avoidance.

50

3.7.2. Connectivity constraints

These constraints use the connectivity constants to consider the network path topology.

They are executed so that routers may reduce the number of them in the model (e.g.,

cores, routers, and links).

3.7.2.1. Links reliability

The SBMeS technique for routing is independent of the platform network topology, hence

it can support most network topologies (e.g., mesh, direct network, indirect network,

balanced tree). It can therefore be used for more reliable systems. To achieve this, multi-

links between cores and routers are stored in matrix 𝐶𝑂𝑁, which the 𝑐 ∈ 𝐶𝑂𝑁 denotes

the connection of the link.

3.7.3. Task allocation and assignment constraints

Tasks are not scheduled on the NoC but rather on cores. For tasks to be assigned only to

cores, and not to routers, the constraints check the allocability constant ALLOC, with

cores of a value of 0 not allocated tasks. The allocated cores are stored in the allocation

array 𝑎𝑙𝑙𝑜𝑐.

We use 𝐴𝐿𝐿𝑂𝐶 to model the allocation of each task 𝑡𝑖 ∈ 𝑇𝑆𝐾 to one of the cores in 𝐶𝑅𝑆:

𝐴𝐿𝐿𝑂𝐶 = [

 𝑎𝑙𝑙𝑜𝑐1

⋮
⋮

𝑎𝑙𝑙𝑜𝑐𝑘

] ∈ {1, … , |𝐶𝑅𝑆|}𝑘

𝑘 = |𝑇𝑆𝐾| (3)

In sections 7.3.2 and 7.3.3, each core can have only one task assigned, while in other cases

(c.f., section 7.3.4 and section 7.3.5), each core can have multiple tasks assigned.

3.7.4. Message duration

𝑀𝐷 is a vector with all the message durations 𝑚𝑑(𝑚) from one hop to the next of all the

messages 𝑚 ∈ 𝑀𝑆𝐺:

𝑀𝐷 = [

𝑚𝑑1

⋮
⋮

mdn

] ∈ {1, … , 𝑀𝑎𝑥}𝑛 | 𝑛 = |𝑀𝑆𝐺| (4)

In other words, 𝑀𝐷 is the duration of the message transmission (depending on message

length) from one hop to the next.

3.7.5. Path and visited cores

Path 𝑃 describes the cores that a message visits. A two-dimensional array is used where

the rows define the 𝑀𝑆𝐺 𝑚 and the columns represent the 𝐶𝑅𝑆 𝑐.

51

𝑃𝑎𝑡ℎ = [

𝑝1,1 ⋯ 𝑝1,𝑐

⋮ ⋱ ⋮
𝑝𝑚,1 ⋯ 𝑝𝑚,𝑐

] ∈ {1, … , 𝑛 } 𝑚×𝑐 (5)

3.7.6. Task dependency constraints

A dependency between two tasks 𝑡𝑘 and 𝑡𝑙 is given when the input message of the task 𝑡𝑙

depends on the output message of the task 𝑡𝑘. For example, in the AM of the task,

T4 depends on T0, T1, T2, and T3.

The following relationship between the injection times of input messages 𝑀𝑆𝐺𝐼𝑁(𝑡) and

output messages 𝑀𝑆𝐺𝑂𝑈𝑇(𝑡) of any task 𝑡∈𝑇𝑆𝐾 holds:

∀𝑡∈𝑇𝑆𝐾. ∀𝑚𝑖 ∈ 𝑀𝑆𝐺𝐼𝑁(𝑡). ∀𝑚𝑜∈𝑀𝑆𝐺𝑂𝑈𝑇(𝑡).

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑖) + 𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚𝑖) + 𝑒�̅�(𝑡) ≤ 𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚𝑜) (6)

T 1

T 2

T 4

T 3

T 0

M0

M1

M2

M3

M4

M5

Figure 12. Conceptual AM

3.7.7. Message deadlines

To support real-time computing, we need real-time constraints for tasks and messages.

For example, we denote with 𝐷(𝑚) the relative deadline of a message 𝑚. The injection

of a message 𝑚 must be sufficiently early that the communication can occur before its

deadline 𝐷(𝑚). To ensure this, we must use the following time constraint for each

message 𝑚 ∈ 𝑀𝑆𝐺:

𝑡𝑖𝑛𝑗𝑒𝑐𝑡(𝑚) + 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (𝑀𝑎𝑥𝐻𝑜𝑝 + 1) ≤ 𝐷(𝑚) (7)

We should ensure that the message 𝑚 is only read at the destination after its deadline:

𝐷(𝑚) ≤ 𝑡𝑟𝑒𝑎𝑑_𝑑𝑒𝑠𝑡(𝑚) (8)

3.8. Decision variables

3.8.1. Slowdown factors (SDFs)

An essential decision variable in our DVFS optimizations model is the 𝑆𝐷𝐹 of tasks and

messages. 𝑡𝑠𝑑𝑓(𝑡) denotes the 𝑆𝐷𝐹 of a core for computing task 𝑡 and 𝑚𝑠𝑑𝑓(𝑚) denotes

the 𝑆𝐷𝐹 for transmitting message 𝑚. Assuming that the contextual parameter 𝐶 is zero,

52

then 𝑡𝑠𝑑𝑓(𝑡) is proportional to the effective execution time 𝑒�̅�(𝑡): 𝑡𝑠𝑑𝑓(𝑡) ∝ 𝑒�̅�(𝑡), and

𝑚𝑠𝑑𝑓(𝑚) is proportional to the effective message duration 𝑚𝑑̅̅ ̅̅ (𝑚): 𝑚𝑠𝑑𝑓(𝑡) ∝ 𝑚𝑑̅̅ ̅̅ (𝑚).

TSDF is the vector of the 𝑆𝐷𝐹s of all tasks in TSK:

𝑇𝑆𝐷𝐹 = [

𝑡𝑠𝑑𝑓1

⋮
⋮

𝑡𝑠𝑑𝑓𝑘

] ∈ {𝑡𝑠𝑑𝑓𝑚𝑖𝑛, … , 𝑡𝑠𝑑𝑓𝑚𝑎𝑥}𝑘

𝑘 = |𝑇𝑆𝐾|, 𝑡𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1 (9)

Analogously, 𝑀𝑆𝐷𝐹 is the vector with the 𝑆𝐷𝐹𝑠 of all messages in 𝑀𝑆𝐺:

𝑀𝑆𝐷𝐹 = [

𝑚𝑠𝑑𝑓1

⋮
⋮

𝑚𝑠𝑑𝑓𝑛

] ∈ {𝑚𝑠𝑑𝑓𝑚𝑖𝑛, … , 𝑚𝑠𝑑𝑓𝑚𝑎𝑥}𝑛

𝑛 = |𝑀𝑆𝐺|, 𝑚𝑠𝑑𝑓𝑚𝑖𝑛 ≥ 1 (10)

Based on these 𝑆𝐷𝐹𝑠, the effective execution time 𝑒�̅�(𝑡) of a task 𝑡 and the effective

message duration 𝑚𝑑̅̅ ̅̅ (𝑚) of a message 𝑚 can be written as follows:

𝑒�̅�(𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡) + 𝐶 (11)

𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚) + 𝐶 (12)

The total effective message duration 𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) of a message 𝑚 from sender to receiver

becomes as follows:

𝑚𝑑̅̅ ̅̅
𝑡𝑜𝑡𝑎𝑙(𝑚) = 𝑚𝑑̅̅ ̅̅ (𝑚) ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (13)

In addition, for the DVFS technique, energy consumption is related to frequency. When

the frequency of cores and routers is reduced, the task execution times and message 𝐷𝑀

are increased accordingly. 𝑀𝑆𝐷𝐹 and 𝑇𝑆𝐷𝐹 are defined as the normalized frequency

parameters in each schedule model (𝑠𝑚) [13]. Each 𝑆𝑀 has its 𝑀𝑆𝐷𝐹 and 𝑇𝑆𝐷𝐹 array

for tasks and messages, which are assigned to the cores and routers. For example,

𝑇𝑆𝐷𝐹4 = 5 means that the execution time of 𝑇4 is increased five times, while the

𝑀𝑆𝐷𝐹5 = 3 means that the 𝐷𝑀 of 𝑀5 is increased by three times in the whole path from

sender to receiver.

3.8.2. Hop count

ℎ𝑜𝑝𝑠(𝑚) denotes the number of intermediate visits of a message 𝑚 along its transmission

path from the sender to the receiver task:

𝐻𝑂𝑃𝑆 = [

hops1

⋮
⋮

ℎ𝑜𝑝𝑠𝑛

] ∈ {1, … , 𝑀𝑎𝑥𝐻𝑜𝑝}𝑛

53

𝑛 = |𝑀𝑆𝐺| (14)

𝑀𝑎𝑥𝐻𝑜𝑝 is the maximum permissible number of intermediate hops. The source task,

which is allocated to a core, initiates a message that will be transmitted through routers

to the core of the destination task. 𝐻𝑂𝑃𝑆 in [13] and [90] is used as a decision variable to

specify the number of visited routers ℎ𝑜𝑝𝑠𝑛 of a message m to the destination task. In the

absence of cyclic paths, the maximum 𝐻𝑂𝑃𝑆 count is 𝑀𝑎𝑥𝐻𝑜𝑝 = 𝑅𝑆 + 1.

3.9. Energy consumption

The power consumption 𝑃 is equal dynamic power 𝑃𝑑𝑦𝑛 plus static power 𝑃𝑠𝑡𝑐 [121]:

𝑃 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑡𝑐 (15)

There are analytical and empirical techniques for modeling 𝑃𝑑𝑦𝑛 [122]. We also use an

analytic method to model 𝑃𝑑𝑦𝑛. 𝑃𝑑𝑦𝑛 tends to dominate contribution to power

consumption, compared to 𝑃𝑠𝑡𝑐 [122]. Thus, in this work, we consider only dynamic

power and dynamic energy consumption. 𝑃𝑑𝑦𝑛 can be modeled as follows:

𝑃𝑑𝑦𝑛 = 𝐴 ∙ 𝑆 ∙ 𝑈2 ∙ 𝑓 (16)

𝐴 is the activity factor that refers to fraction between 0 and 1 and can express the total

capacity of circuits during each cycle charged or discharged, 𝑆 is the switched capacitance

that refers to aggregate load of system that depended on wire lengths on chip, U is the

voltage, and 𝑓 is the frequency [122].

Extracted from the above equation, the effective switch capacitance 𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 is given as

follows:

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 = 𝐴 × 𝑆 (17)

To keep our analytical model within the limits of the solver CPLEX, we consider

𝑆𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 to be constant one. With this simplification the power consumption 𝑃𝑑𝑦𝑛

becomes proportional to the clock frequency 𝑓 and the square of voltage 𝑈:

𝑃𝑑𝑦𝑛 ∝ 𝑓 ∙ 𝑈2 (18)

Let 𝐸𝑇,𝑑𝑦𝑛(𝑡) denote the dynamic energy consumption of a task 𝑡 and 𝐸𝑀,𝑑𝑦𝑛(𝑚) denote

the dynamic energy consumption of transferring a message 𝑚. With 𝑃𝑑𝑦𝑛 being the

average power consumption, we can model the dynamic energy consumption as follows:

𝐸𝑇,𝑑𝑦𝑛(𝑡) = 𝑃𝑑𝑦𝑛 ∙ 𝑒𝑡(𝑡) (19)

𝐸𝑀,𝑑𝑦𝑛(𝑚) = 𝑃𝑑𝑦𝑛 ∙ 𝑚𝑑(𝑚) (20)

Where 𝑒𝑡(𝑡) and 𝑚𝑑(𝑚) are inversely proportional to the clock frequency:

𝑒𝑡(𝑡) ∝
1

𝑓
 ∧ 𝑚𝑑(𝑚) ∝

1

𝑓
 (21)

54

3.9.1. Effective Speed

𝑒𝑡(𝑡) of a task 𝑡 and 𝑚𝑑(𝑚) of a message m are given at the maximum clock frequency

𝑓𝑚𝑎𝑥. However, the effective execution time, denoted as 𝑒�̅�(𝑡), and the effective message

duration, denoted as 𝑚𝑑̅̅ ̅̅ (𝑚), depend on the selected clock frequency 𝑓𝑠𝑒𝑙 and a contextual

parameter C:

𝑒�̅�(𝑡) = 𝑒𝑡(𝑡) ∙ 𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑡) + 𝐶 (22)

𝑚𝑑̅̅ ̅̅ (𝑚) = 𝑚𝑑(𝑚) ∙ 𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚) + 𝐶 (23)

This parameter 𝐶 is a contextual setting delay, which is either zero in case that the clock

frequency for the current task or message is the same as before, or otherwise a constant

𝐶𝑘, in case that the clock frequency has been changed at the beginning of the current task

or message. The parameter 𝐶 models the fact that changing the clock frequency in a

processor takes some time. In our calculations, we assume that 𝐶𝑘 = 1𝑚𝑠.

In DVFS the voltage 𝑈 varies approximately proportionally with the clock frequency 𝑓,

i.e., 𝑈 ∝ 𝑓, the power 𝑃𝑑𝑦𝑛 is thus proportional to the cube of the clock frequency:

𝑃𝑑𝑦𝑛 ∝ 𝑓3 (24)

Based on the above equation we can derive that the energy 𝐸𝑇,𝑑𝑦𝑛(𝑡) of a task 𝑡 and the

energy 𝐸𝑚,𝑑𝑦𝑛(𝑚) of a message 𝑚 are proportional to the cube of the clock frequency

multiplied by the execution/communication time:

𝐸𝑇,𝑑𝑦𝑛(𝑡) ∝ 𝑓3 ∙ 𝑒𝑡(𝑡) (25)

𝐸𝑚,𝑑𝑦𝑛(𝑚) ∝ 𝑓3 ∙ 𝑚𝑑(𝑚) (26)

3.9.2. Frequency Co-Efficient

Based on equations 24 and 25, the standard energy metrics cannot completely support our

metric needs. In the following section, we denote the above proportionality factor of the

energy consumption as the frequency co-efficient FEt for a task and FEm for a message

respectively. However, the effective frequency co-efficient of tasks is denoted as 𝐹𝐸𝑇
̅̅ ̅̅ ̅ and

the effective message frequency co-efficient is denoted as 𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ . These frequency co-

efficients serve to quantify the energy reductions in the experimental evaluation and the

abstraction from technology-specific parameters, such as the switched capacitance.

𝐹𝐸𝑇 = 𝑒𝑡(𝑡) ∙ 𝑓3 (27)

𝐹𝐸𝑇
̅̅ ̅̅ ̅ = 𝑒𝑡(𝑡) ∙ (𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑡))3 (28)

𝐹𝐸𝑚 = 𝑚𝑑(𝑚) ∙ 𝑓3(29)

𝐹𝐸𝑚
̅̅ ̅̅ ̅̅ = (𝑚) ∙ (𝑓𝑚𝑎𝑥/𝑓𝑠𝑒𝑙(𝑚))3 (30)

3.10. Quadratization of the product

55

We use MIQP to solve the constraint of our optimization model. Hence, any term with

three or more variables cannot be used in our optimizations model. However, in the

constraints described so far, there are also non-quadratic expressions. For example,

𝑚𝑠𝑑𝑓(𝑚)2 ∙ 𝑑𝑚(𝑚) ∙ ℎ𝑜𝑝𝑠(𝑚) with 𝑚𝑠𝑑𝑓(𝑚) and ℎ𝑜𝑝𝑠(𝑚) are optimization

variables.

To make our expressions quadratic [123], we use Fourer's strategy for "non-linear

optimization” [124]. While this strategy is typically used for linearization, we use it here

for “quadratization” [119]. The key principle is to split the optimization processes into

two phases, wherein each phase a different variable is treated as constant. A real-time

system must execute concurrent

Run MeS and solve problem for static-slack schedule

Run MeS and solve problem for static-dynamic

schedules

Discover HOPS from

first SM (static-slack)

FixedHOPS=HOPS

Fix (Disable) MSDF=1

Using FixedHOPS as an input

Change Objective function by using FixedHOPS

Figure 13. Quadratization technique via hops

Figure 13 illustrates how we use the quadratization of the constraint system of our model.

In the first step, we optimize the model, with the 𝑆𝐷𝐹𝑠 set to constant one (i.e., maximum

frequency). From the obtained result, we extract the number of hops (ℎ𝑜𝑝𝑠(𝑚)) and use

these values as constants in a second optimization run, where we use the flow-down

factors as a decision variable. In this way, we use CPLEX with an MIQP algorithm.

3.11. The objective function

The objective of our static-scheduling function is to maximize energy efficiency for both

cores and routers by lowering clock frequency (c.f., [90]). The objective function is to

minimize the makespan.

In this work, we use a predefined makespan as a constraint variable for controlling

schedule timing. Power consumption is minimized by increasing timing (e.g., task

execution times and message duration times). Timing is controlled via the slow-down

factors of 𝑡𝑠𝑑𝑓 and 𝑚𝑠𝑑𝑓. According to our energy model, 𝐹𝐸𝑇(𝑡) = 𝑓3 ∙ 𝑒𝑡(𝑡) and

56

𝐹𝐸𝑀(𝑚) = 𝑓3 ∙ 𝑚𝑑(𝑚) and the 𝑆𝐷𝐹 technique, which is 𝑓𝑠𝑒𝑙 =
𝑓𝑚𝑎𝑥

SDF
 and 𝑒𝑡(𝑡) ∝

1

𝑓
 and

𝑚𝑑(𝑚) ∝
1

𝑓
, it follows that

𝑃𝑡𝑎𝑠𝑘 ∝ 𝑡𝑠𝑑𝑓(𝑡)3 ∙ 𝑒𝑡(𝑡) (31)

𝑃𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ∝ 𝑚𝑠𝑑𝑓(𝑚)3 ∙ 𝑚𝑑(𝑚) (32)

Figure 14 illustrates how, in one core, the 𝑇𝑆𝐷𝐹 (which can be simulated for 𝑀𝑆𝐷𝐹 for

messages and routers) has an effect on multi-task timing and core frequency. For example,

execution time 𝑇0, after reduction frequency from 𝑓𝑚𝑎𝑥 to 𝑓𝑠𝑒𝑙(𝑡0) , changes to 𝑒�̅�(𝑡0)

and 𝑒𝑡(𝑡0) < 𝑒�̅�(𝑡0) .

Figure 14.The effect of TSDF on tasks et(t) and core fault

The critical aspect of our 𝑆𝐷𝐹 modeling is related to multi-frequency changes to tasks or

messages. This means the frequency of each core for each task 𝑡 is dependent upon and

tuned by the 𝑡𝑠𝑑𝑓(𝑡). Therefore, each task runs a specific and unique frequency 𝑓𝑠𝑒𝑙(𝑡).

In addition, in the same core, 𝑓𝑠𝑒𝑙(𝑡𝑘) can be less than, equal to, or greater than 𝑓𝑠𝑒𝑙(𝑡) of

other tasks.

Table 4. Sample data calculated for Figure 14

𝒆𝒕(𝒕𝟎) 𝒆𝒕(𝒕𝟏) 𝒆𝒕(𝟐)
20s 30s 10s

𝒇
𝒎𝒂𝒙 𝒇

𝒎𝒂𝒙 𝒇
𝒎𝒂𝒙

100 Mhz 100 Mhz 100Mhz

𝒕𝒔𝒅𝒇(𝒕𝟎) 𝒕𝒔𝒅𝒇(𝒕𝟏) 𝒕𝒔𝒅𝒇(𝟐)
4 5 2

𝒆�̅�(𝒕𝟎) 𝒆�̅�(𝒕𝟏) 𝒆�̅�(𝒕𝟐)
𝟖𝟎𝒔 + 𝑪 150𝑠 + 𝐶 20𝑠 + 𝐶

57

𝒇
𝒔𝒆𝒍(𝒕𝟎) 𝒇

𝒔𝒆𝒍(𝒕𝟏) 𝒇
𝒔𝒆𝒍(𝒕𝟐)

25 Mhz 20 Mhz 50 Mhz

Table 4 lists sample input data and calculations for 𝑆𝐷𝐹 effects on task execution times

and core frequency, as used in Figure 14.

MSDF=1
TSDF=X

FLT(SM)=None

Hops_Const(m)
(Quadratisation)

RES1

Scheduler

Input from 1

Output for 1

MSDF=X
TSDF=X

FLT(SM)=None

RES2

SM0 (Makespan)

Input from 2

Output for 2

MSDF=X
TSDF=X

FLT(SM)=All

RES2

SSM/SM0

Meta-
Scheduling

Output for 3

Input from 3

1.

2.

3.

Figure 15. Three-step scheduling for finding optimum solutions

As described in section 2.6.3.2 on assuring quadratic expressions, the optimization

process is partitioned into two phases.

For the first phase, we assume all 𝑀𝑆𝐷𝐹𝑠 are constant (Figure 13 and Figure 15):

58

∀𝑚 ∈ 𝑀𝑆𝐺 . 𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚) = 1 (33)

Based on that, we get a quadratic constraint system with its goal maximized by CPLEX:

∀t ∈ TSK. ∀m ∈ 𝑀𝑆𝐺 .

𝐶𝑃1(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2 + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓𝑐𝑜𝑛𝑠𝑡(𝑚)2 ∙ (ℎ𝑜𝑝𝑠(𝑚) + 1) (34)

𝑅𝐸𝑆1 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ ∑ (𝐶𝑃1(𝑚𝑗 , 𝑡𝑖)
|𝑀𝑆𝐺|
j=1

|𝑇𝑆𝐾|
i=1) (35)

Goal: finding ℎ𝑜𝑝𝑠(𝑚) using the quadratization technique (section 3.10).

Phase 2: based on the optimization result, 𝑅𝐸𝑆1, the second optimisation phase is

completed. First, the hop counts are extracted from the intermediate result 𝑅𝐸𝑆1:

∀m ∈ 𝑀𝑆𝐺 . ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) 𝑖𝑠 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑅𝐸𝑆1 (36)

Next, the optimization result – including the 𝑆𝐷𝐹𝑠 – is calculated using the constant

values of the hop counts from the first solution:

∀t ∈ TSK. ∀m ∈ 𝑀𝑆𝐺 .

𝐶𝑃2(𝑚, 𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2 + 𝑚𝑑(𝑚) ∙ 𝑚𝑠𝑑𝑓(𝑚)2 ∙ (ℎ𝑜𝑝𝑠𝑐𝑜𝑛𝑠𝑡(𝑚) + 1) (37)

𝑅𝐸𝑆2 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ ∑ (𝐶𝑃2(𝑚𝑗, 𝑡𝑖)
|𝑀𝑆𝐺|
j=1

|𝑇𝑆𝐾|
i=1) (38)

Goal: in this step, 𝑆𝑀0 with SS generate and maximum makespan is discovered.

Phase 3: finally, 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆𝑆𝑀) = 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑆𝑀0) are used as the timing constraint

for 𝑓𝑙𝑡(𝑠𝑚) and the objective function is equal to 𝑅𝐸𝑆2.

Goal: scheduling all scenarios and creating 𝑆𝑆𝑀

3.12. Slack recovery technique

We use the slack time of tasks to increase energy-efficiency in NoCs by optimizing the

system's timing. When tasks are running in a system, as shown in Figure 16, two types of

slacks will occur: SS and DS.

SS is the time gap for dependent tasks in different cores, between the end of the first and

the start of the second (e.g., SS SS0 between T1 and T2, SS1 between T3 and T0, and

SS3 between T6 and T5). Other SS examples include two independent tasks on the same

core (e.g., SS2 occurs between T6 and T4 on core 4.) DS occurs when a task finishes

earlier than its WCET (e.g., DS0 in T1, DS1 in T3, DS2 in T6, and DS3 in T4).

59

Figure 16. a. Static slack (SS) and b. Dynamic slack (DS) sample

3.12.1. Makespan and slack

The makespan 𝑚𝑘𝑠(𝑠𝑚) of a scheduling model 𝑠𝑚 is the time from the start of the first

task in sm to the completion of the last task in 𝑠𝑚. A useful scheduling optimisation is,

for example, to reduce the makespan to fit it the time slot of a time-triggered system. MeS

uses the occurrence of DS to reduce the makespan by shifting tasks.

With this method, the occurrence of DS shifts the system into a schedule with shorter

makespan by going down along an edge of the SM tree. 𝑆𝑀0 sits at the top of the SM tree,

thus all other schedules which have DS will have a lower makespan:

∀𝑠𝑚∈SSM/{𝑆𝑀0}. 𝑚𝑘𝑠(𝑆𝑀0) > 𝑚𝑘𝑠(𝑠𝑚) (39)

Given a scheduling model 𝑠𝑚, by optimising the makespan, we obtain an optimized

scheduling model 𝑠𝑚𝑜𝑝𝑡. The achieved saving of makespan time (𝑆𝑎𝑣𝑇) is given as

follows:

𝑆𝑎𝑣𝑇 = 𝑚𝑘𝑠(𝑠𝑚) − 𝑚𝑘𝑠(𝑠𝑚𝑜𝑝𝑡) (40)

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T1

T2

T5

T4

T0

T6

T3
SS1

SS0

time

Makespan

b. Dynamic scheduling model

SS3

SS2

DS0

DS1

DS2 DS3

T1

T2

T5

T4

T0

T6

T3

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

SS3

SS2

SS1

SS0

Makespan

time
a. Static scheduling model (𝑆𝑀0)

60

Given the scheduling model shown in Figure 16.b, the scheduling model 𝑠𝑚𝑜𝑝𝑡 resulting

from the makespan optimization based on DS deployment is shown in Figure 17.

With this method, we aim to minimize energy consumption by speeding up computation,

enabling the system to go sooner into idle mode.

Figure 17. Usage of dynamic slack (DS) to reduce makespan

3.12.2. Power consumption and slack

With this method, we aim to minimize energy consumption to deploying DS to slow down

the components, while preserving makespan. This means that we preserve the finish time

of the schedule, but use the extra time for the remaining jobs with lower frequency, thus

saving energy since a lower frequency means lower power consumption. In this method,

when DS occurs, the next tasks do not shift, but run with an increased execution time due

to lower frequency. Thereupon, energy-efficiency is increased.

Given the scheduling models shown in Figure 18, the scheduling model Figure 18.a

resulting from the power consumption optimization based on DS of T4 deployment is

shown in Figure 18.b. In this example, tasks T5 and T6 depend on T4. When DS0 occurs

for T4, this free slot and SSs are used to achieve the maximum 𝑆𝐷𝐹 by expanding and

increasing the execution time of T5 and T6 via the frequency of the allocated core(s). The

maximum time for T5 is equal to the following:

𝑀𝑎𝑥(et
𝑡5

) = et(𝑡5) + 𝐷𝑆0 + 𝑆𝑆2 (41)

Also, the optimal 𝑆𝐷𝐹 for T5 is proportional to 𝑀𝑎𝑥(et
𝑡5

):

et(𝑡5) ∙ 𝑇𝑆𝐷𝐹(𝑡5) ≤ 𝑀𝑎𝑥(et
𝑡5

) (42)

Core 2

Core 0

Core 5

Core 4

Core 3

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑠𝑚)

SS3

SS2

SS0

SS1

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑠𝑚𝑜𝑝𝑡)

T1

T6

T7

T4

T0

T3

T2 Core 1

time

SavT

61

Figure 18. Usage of 𝑆𝐷𝐹 regarding dynamic slack (DS)

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T0

T1

T5

T3

T4

T2
SS1

SS0

T6
time

Makespan

SS2

SS3

DS0

a. Dynamic slack for T4

Core 5

Core 0

Core 1

Core 2

Core 3

Core 4

T0

T1

T5

T3

T4

T2
SS1

SS0

T6
time

DS0+SS3

DS0+SS2

b. Adding DS and SS to next tasks

62

63

Chapter 4: Scenario-based meta-scheduling (SBMeS)

The basis of the SBMeS technique expressed in this work is static scheduling [90]. This

technique seeks to resolve scheduling problems in scenario-based scheduling and quasi-

static task mapping [125], which is variously known as “super-scheduling” [11] and

“meta-scheduling” [13].

Few articles focus on super-scheduling or SBMeS and adaptive TT (e.g., Persya et al.).

[11] focuses on the dynamic super-scheduler, but we are using the static scheduler and

pre-compiled schedules.

In this work, MeS is developed to solve SBMeS problems, with multi-task scheduling on

a multi-core. We also propose an energy-efficient scheduling algorithm identify faults,

DS, and 𝑆𝐷𝐹𝑠 in multi-scenario-based systems for NoC-based MPSoC (EES–MPNoC

[77]). Our scheduling algorithm achieves minimal frequency scheduling and can reduce the

dynamic power consumption of NoCs.

SBMeS and quasi-static scheduling strategies are used in platform-based designs (e.g.,

SAFEPOWER and ArtistDesign [126]). Where a group of schedules is generated off-line

and at runtime, the scheduler chooses a specific schedule based on the designed scenario.

4.1. Meta-scheduler (MeS)

MeS [12, 13] designed to generate schedules based on events and scenario changes. When

an event such as a fault (e.g., failed link or router) or slack occurs, the system reacts by

routing to precomputed schedules [17]. In static scheduling, a feasible schedule is

calculated offline [17]. Figure 19 shows how the meta-scheduler is used in a real system

for MPSOC.

64

Figure 19. Usage of scenario-based meta-scheduling (SBMeS) on system-level design for SAFEPOWER

multi-processor system-on-a-chip (MPSoC) [3]

4.2. System model and algorithm

The technique developed in MeS is depth-first algorithm establishing schedule

backwards with tabu-set for re-convergence (FAESB-TSR), as presented in Figure 20.

As part of the MeS solution, we developed a scenario-based graph traversal algorithm

based on a heuristic tool and a backtracking algorithm based on this heuristic for

identifying and managing events. The main goal of this method is to fetch, visit, execute,

and traverse the events. The basic concepts of the FAESB-TSR are described in [6] (e.g.,

freezing and thawing, incrementing the algorithmic steps).

The bases all our scheduling model designs begin with AM, PM, and SM. As mentioned

in section 3.1, MeS works with multiple scheduling models, organized in tree form to

switch between schedules based on dynamic events. Thus, we introduce 𝑆𝑆𝑀 as the set

of all scheduling models. However, among the scheduling models 𝑠𝑚 ∈ SSM, the one

using SS is denoted as 𝑆𝑀0 All other SSM/{𝑆𝑀0} use DS.

In Figure 20, schedule model 𝑆𝑀 = { < 𝑣𝑟, 𝑓𝑧 > } denoting 𝑣𝑟 is variable and 𝑓𝑧 is a

frozen element (e.g., task, core, message) with a value of 0 or 1. 𝑆𝑀 is equal to 𝐴𝑀 ∪

 𝑃𝑀 and all constants and constraints are used as input for the scheduling problem.

Context event CE denotes scenarios with relevant events on the timeline that lead to a

change in 𝑆𝑀 and 𝐶𝐸 = < 𝑐𝑒, 𝑒𝑣𝑡, @𝑐, 𝑛𝑣 >, with 𝑐𝑒 denoting the event name (e.g.,

slack, fault), 𝑒𝑣𝑡 denoting instant event time, @𝑐 denoting a reference to a constant from

65

𝑆𝑀, and 𝑛𝑣 denoting a new value. Finally, the context model 𝐶𝑀 = < 𝑐𝑒, @𝑐, 𝑣𝑙 >

denotes all events.

Execution-Event 𝐸𝐸 =< 𝑒𝑛, 𝑒𝑖, @𝑑𝑣 > corresponds to an application activity, such as

the start of a task execution or communication activity. 𝑒𝑛 denotes an event name, 𝑒𝑖 an

event instant, @𝑑𝑣 a reference to a decision variable from 𝑆𝑀 and 𝑓𝑧 from SM is frozen.

Calendar 𝐶𝑙 = 𝐶𝐸 ∪ 𝐸𝐸 contains a union of all events with the respective instants and

creates an event and scenario guide map.

𝑇 denotes current scheduling time. When 𝑇 = 𝑒𝑖, the relevant instructions in 𝐶𝑙 will be

executed.

Schedule (AM, PM, SM): a new schedule is computed (e.g., using MIQP on CPLEX)

when the values for non-frozen variables 𝑓𝑧(𝑣𝑟) = 𝑓𝑎𝑙𝑠𝑒 are identified; hence, frozen

variables have predefined contents (𝑓𝑧{𝑣𝑟0 … 𝑣𝑟𝑛}).

66

If Cal is empty

No

Yes

No

Yes

T++

If event

always taken

Yes,

Add to the

 right side

No,

Add to

the left side

If event has no

tabu

Yes

No

Unscheduled Application

Available: AM, PM, CM

SM with all unfrozen T=0

Invoke Scheduler

SM=schedule(AM,PM,SM)

Scheduled Application

SM available If T>0

 Increase event time T

and SM already in tabu set

Finished algorithm

Pop new event from Cal

Execute event, adapt input

models

mark variable from E in SM

as frozen

Updated AM, PM or SM

required regarding event type

Remove An event from

tabuset, when going up again

in the tree unfrozen variabels

Create Calendar

Cal=calendarize(SM,CM)

Push Events on stack

Creat Tabu set for each state

and item

Calendar established

Cal = CE EE available

Figure 20. Depth-first algorithm establishing schedule backwards with tabu-set for re-convergence

(FAESB-TSR)

4.3. Architecture of meta-scheduler (MeS)

67

XML Parser

Output

generator

GraphViz

shaped

data

MeSViZ

Gantt

mapp

Multi-

Gantt

mapp

Main AM, PM, CM

 class

GraphViz

total data

Scheduler

Controller

SM tree creator
Tabu

controler

E
v
e
n
t

 M
a
n
a
g
e
r

Calender

creator

Undo

manager

M
es

 b
u
il

d
in

g
 b

lo
ck

Hardware platform

XML input model

AM, PM, CM

Multi SM s tree

GVEdit

S
c
h
ed

u
le

r
b
u

il
d
in

g
 b

lo
ck

Input provider

(e.g., fixing value)

Formulate problem

Solve problem

Answer is feasible

Output provider

Yes

Solve problem (e.g., check the input

model or formula)

Exit

No

Delta Scheduling

generator

Figure 21. Conceptual of the meta-scheduler (MeS) tool

To solve the scheduling problem (i.e. energy optimization based on the slack time we use

the SBMeS algorithm, as shown in Figure 20. Figure 21 represents a conceptual model of

68

the total process of the SBMeS technique. This includes input and output data (e.g., XML,

Gantt map, Graphviz data) and their processes (e.g., XML parser, MeSViz), data

structures (e.g., AM, PM, and CM classes, SM tree), managers and controllers (e.g.,

event, undo, calendar, Tabu, scheduler), and scheduling processes (e.g., SM tree creator,

scheduler, Delta Scheduling).

4.4. Meta-scheduler (MeS) design

4.4.1. Event-driving technique

Event driving and event handling are the most valuable aspects of SBMeS, dependent on

each type of event.

MeS begins by generating a static schedule with scheduling 𝑆𝑀0. To take the event into

account, for each task of the AM, the event manager reduces the WCET by the slack time.

DS is marked as an event and injected by the calendar creator into the calendar table.

This mechanism starting freezing algorithm after generating the Calendar, to cover each

event regarding the 𝑒𝑡.

The event manager sends the event type (e.g., slack) and timing to the schedule controller.

Depending on the timing of the calendar event, the schedule controller will freeze or

unfreeze the corresponding task in the tabu controller. The tabu controller freezes the

partial schedule up to the event and leaves the rest to be completed by the scheduler.

4.4.2. The schedule model (SM) tree creator

The AM and PM are then sent to the scheduler to create new schedules by completing a

frozen schedule. The SM tree creator generates the scheduling tree (multi-SM tree) and,

depending on whether events are taken, they are either stored on the right or left side of

the tree.

We build a SBMeS tree, with the top node assuming no occurrence of an event (e.g., DS).

For example, each occurrence of a DS event switches to another schedule down the tree

with better energy efficiency.

4.4.3. Output generator

Finally, when every event has been taken and the calendar is empty, MeS calls on the

output generator to create two output files in Graphviz format: shaped data and total

data. The total data file includes all the control parameters stored in the nodes of the

scheduling graph. The shaped data file is a cleaned-up version of the SM tree, including

only the real scheduling nodes but without the controller parameters. MeSViz is used to

visualize single schedules as a Gantt map and events, depending on the schedules as a

multi-Gantt map in different graphical format.

4.5. Functions and algorithms

4.5.1. Main functions and algorithms

69

The integration of the MeS functions is a crucial aspect of the design, speeding up

significant amounts of data processing for scheduling and visualization. The XML parser

processes all data in XML files to establish the AM, PM, and CM. MeS organizes the

input data for the scheduler. In the final step, all schedules are visualized (cf. Algorithm

1).

Algorithm 1. Main function algorithm

4.6. Scenario-based meta-scheduling (SBMeS) and fault modeling

In this part, we present the SBMeS model for the fault and reliability strategy and for both

cores and routers on the schedules. Figure 22 shows a high-level overview of SBMeS and

its methods and functions and the interconnection between them.

SBMeS is an offline schedule synthesizer and generator, and schedules results can be

used repeatedly and cyclically during the system runtime operation. SBMeS makes heavy

and complex computational demands for generating schedules offline. In other words,

each operation and functionality of computational and communication parts can be

implemented with a simple code and lookup table.

70

Figure 22 . Scenario-based meta-scheduling (SBMeS) general model

4.6.1. Fault assumptions

In the SBMeS fault model, multiple faults can occur, and SBMeS supports a different

range of faults (in hardware and/or software layers) according to the faulty definitions

scenario in CM.

Therefore, each event in CM is characterized by its criticality level. We consider only

core crash fault mode [127] in the PM layer to be a primary fault, and task slack as a sub-

fault in the AM layer.

In our model, CRS fault has high criticality and priority level and slack is low. In AM, we

can switch off each 𝑇𝑆𝐾 slack and define limits for 𝑆𝐷𝐹 for each task or message or use

control deadlines for each 𝑇𝑆𝐾 or 𝑀𝑆𝐺.

If any high criticality event is executed (core crashed), the system immediately switches

to the related scenario with the high criticality mode [32]. As the system continues in this

mode, all low criticality events (in our model slack) are limited to this status. However,

further low criticality tasks continue to be executed and the system remains in high

criticality mode until finishing the schedule or another low/high criticality event occurs.

We assume that, in the SAFEPOWER model, errors are detected by concept monitor and

managed with the agreement layer, with each related schedule used on the platform.

4.6.1.1. Tolerance threshold range

Meta-Scheduler

F
a

u
lt

-

R
ec

o
ve

ry

R
el

ia
b
il

it
y

Scheduling

Visualizing
C

o
re

s
a
n

d
 t

a
sk

s
P

a
th

 a
n

d

m
es

sa
g
es

E
ve

n
t

co
n
te

xt

71

We define 𝑇𝑇𝑅 as “tolerance threshold range.” PM is intended to tolerate the maximum

number of failures 𝑇𝑇𝑅 = (𝐶𝑅𝑆 − 1). In our high criticality model, each 𝐶𝑅𝑆 of the PM

is mapped to a vertex in 𝑃𝑀 = (𝑉, 𝐸). Hence, if the 𝑠𝑚 scenario contains 𝑠𝑚(𝑓𝑙𝑡(𝑐𝑥))

that 𝑐𝑥 do not work (crashed) and has a fault, then route connectivity and tasks executions

should work and be computed without 𝑐𝑥. 𝑐𝑥 must be omitted during the computation of

the schedule and next events.

4.6.2. Fault-tolerant algorithm

When one or a series of core faults occurs, 𝑓𝑙𝑡(𝑐), the scheduler must guarantee that the

system can continue to work safely. It needs that each task and messages which are made

dependent upon the failed core(s) 𝑓𝑙𝑡(𝑐) via new schedule calculation, timing and

remapping from a faulty core(s) to other healthy core(s) (migrating to the new location).

Algorithm 2 shows how this mechanism works. The mechanism changes between

messages, tasks, cores and, events stored in the 𝑆𝑆𝑀 tree, which the hardware is able to

use it for a new safe status.

∀𝑐 ∈ CRS , ∀ 𝑓𝑙𝑡(𝑐) ∈ 𝐹𝐿𝑇(𝑠𝑚, 𝑐). 𝑓𝑙𝑡(𝑐) = 1, ∀ e𝑥 ∈ 𝐸𝑣𝑒𝑛𝑡 (sm)

𝑭𝒂𝒖𝒍𝒕 𝒓𝒆𝒄𝒐𝒗𝒆𝒓𝒚 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 (𝑨𝑴, 𝑷𝑴, 𝑪𝑴)

𝑓𝑙𝑡(𝑐𝑥) = 1 → 𝑐𝑎𝑙𝑙 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 (e𝑥)

−𝑃𝑢𝑠ℎ 𝑠𝑡𝑎𝑐𝑘(𝐴𝑀, 𝑃𝑀)

𝐹𝑟𝑒𝑒𝑧𝑒 and 𝑝𝑢𝑠ℎ 𝑒𝑣𝑒𝑟𝑦 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑚

and 𝑡 𝑡𝑜 𝑡𝑎𝑏𝑙𝑒 𝐹𝑟𝑒𝑒𝑧(𝑠𝑚𝑥)

𝑃𝑢𝑠ℎ 𝑐𝑥 𝑡𝑜 𝑒𝑥

𝐹𝑖𝑛𝑑 𝑒𝑣𝑒𝑟𝑦 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑐 𝑤ℎ𝑖𝑐ℎ 𝑓𝑙𝑡(𝑐) = 0

𝑈𝑠𝑒 𝐹𝑟𝑒𝑒𝑧(𝑠𝑚𝑥) 𝑎𝑠 𝑓𝑖𝑥𝑒𝑑 𝑑𝑎𝑡𝑎 𝑖𝑛𝑝𝑢𝑡

𝑅𝑒𝑚𝑜𝑣𝑒 𝑐𝑥 𝑓𝑟𝑜𝑚 CRS

𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑃𝑀 𝑎𝑛𝑑 𝐴𝑀

−𝑅𝑢𝑛 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟

−𝐴𝑑𝑑 𝑠𝑚 𝑡𝑜 𝑆𝑆𝑀

𝐸𝑣𝑒𝑛𝑡 (𝑠𝑚) 𝑖𝑠 𝑓𝑟𝑒𝑒 → 𝐸𝑥𝑖𝑡

−𝑃𝑜𝑝 𝑠𝑡𝑎𝑐𝑘(𝐴𝑙𝑙)

Algorithm 2. Fault recovery and scheduling technique

Figure 23 represents the states of three events which occur in 𝑆𝑆𝑀. Figure 24 shows the

results of each event in each 𝑆𝑀𝑥.

72

0

 ev(flt(c)) e1: Core Fault

CRS3

3

2

 ev(flt(s)) e0: Slack

(TSDF T1,T4)

1

 ev(flt(c)) e2: Core Fault

CRS2

Figure 23. States of 3 events and their effect of each 𝑆𝑀

For example, in 𝑆𝑀1 𝑒𝑣(𝑓𝑙𝑡(𝑠)) slacks (for 𝑇1 and 𝑇4) and 𝑇𝑆𝐷𝐹 are added to these

tasks (e0). In 𝑆𝑀2, the 𝑒𝑣(𝑓𝑙𝑡(𝑐)) fault in CRS 3 𝑓𝑙𝑡(𝑐3) causes 𝑇2 to shift to 𝐶𝑅𝑆 0

(e1).

In section 5.7, we will discuss how we can use this method and model to save memory

by removing duplicated data. For example, in 𝑆𝑀0,1,2,3, T0 is repeated using the same

location and size, 𝑆𝑀1,2,3 T1, and 𝑆𝑀2,3 T2 is repeated.

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3T2

T1

T0

SM
0

SM
1

SM
2

SM
3

SM1= SM0(T0)+ changes(T1...T4)

SM2= SM1(T1.T4)+ changes(T2,T3)

SM3= SM2(T0,T1,T2,T4)+
changes(T3)

FLT0

FLT0

FLT1
Time

Slack

Slack

e0 e1 e2

Figure 24. Events’ effects in task scheduling

4.7. The goals of meta-scheduler (MeS) design

73

Flexible design: Me𝑺 is designed for scenario-based and static scheduling for adaptive

TTS. MeS enables scenario-based scheduling for fault, event, and context parameter

changes.

Extensibility: MeS has a modular architecture that facilitates extensibility via XML-

defined pluggable inputs. Sample components for visualization and scheduling are

included in the main functions and may be easily replaced with custom functions.

A significant challenge in scheduling is finding schedules that are both feasible and

optimum. The modular scheduler architecture enables the selection of several scheduling

parameters to improve scheduling performance. MeS achieves optimized schedules by

changing the default optimizer of CPLEX to barrier optimizers, and MeS establishes a

MIQP problem to find a global optimum. The first-order optimality parameter of CPLEX

(local optimum) is changed to the value optimal global. In some cases (e.g., speed up), it

is possible to disable modules (e.g., power modelling, visualization).

74

75

Chapter 5: Visualization and evaluation of schedules

5.1. Requirements for basic visualization

A visualizer is needed to show the contents of MeS including AM, PM, CM, and SM. A

basic schedule visualizer is capable of displaying the following items:

A) Show resources, tasks and messages location, timing.

B) Show the messages routes, routers and dependencies between the sender and

receiver tasks.

C) Present textual information of messages properties (e.g., MSDF, route)

D) Textual information of tasks properties (e.g., TSDF, WCET)

E) Schedule ID (𝑆𝑀𝑥)

F) Generated text and image output formats (e.g., JPG, PDF)

5.2. Requirements for meta-visualization

A meta-visualizer of multi-schedule 𝑆𝑆𝑀 first needs to access the basic data generated

by the basic visualizer and then use the CM contents to combine, analyze, and generate

extra details to display following items:

 parent and child schedule nodes in one scope

 detailed event information in textual and graphical format

 a report of the difference between parent and child nodes

 task and message location and 𝐷(𝑚) changes in textual and graphical forms

 the changed messages routes

 full information of total and removed schedules (e.g., invalid or pruned nodes)

5.3. Graph mapping

The Gantt chart is a straightforward solution for visualizing schedules. It is better quality

and simpler than textual format for aiding understanding of schedules and their

dependencies. “This method is a common solution for human-resource scheduling, and

in this work, it is referred to as “Gantt mapping” [10] ” (e.g., Figure 25).

76

Figure 25. Schedule Gantt map

5.4. Gantt mapping

In MeS, the description of events and schedules in hierarchical graphs is necessary for

handling and debugging large and complex schedules. To present the schedules and event

parameters, the graph model needs to be distinctive. These distinctives are the information

in the nodes and edges of the graphs (e.g., ID 𝑆𝑀𝑥, event). A graph mapping represents

the event dependency between the schedules, as shown in Figure 26.

Figure 26. Schedule tree include all data

5.5. Visualization of schedule changes

After a fault (event) occurs, the scenario and system states must change. However, it is

vital that the designer compare the schedules to identify the changes that occurred. MeS

generates this information, but an overview of the 𝑆𝑀 is required: this is “meta-

visualization.” MeSViz must be able to identify when the event occurred, what kind of

77

changes were caused by it, and which elements were changed. Examples include tasks

and messages 𝐷(𝑚) or allocation decisions, as shown in Figure 27.

Figure 27. Meta-visualization of an event

5.6. Energy calculation

To evaluate the total energy reduction for both cores and routers for the NoC performance

and deadline misses of our algorithm, MeSViz was customized to calculate and display

the energy consumption of a 𝑠𝑚 and 𝑆𝑆𝑀.

5.6.1. Energy consumption

MeSViz is used to calculate the energy consumption 𝐹𝐸(𝑠𝑚) of each scheduling model

𝑠𝑚 or an average of all dynamic scheduling models, 𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛(SSM/{𝑆𝑀0}).

The energy 𝐹𝐸𝐶(𝑐, 𝑠𝑚) consumed at any core 𝑐 ∈ CRS for all its tasks can be calculated

as follows:

∀𝑠𝑚∈SSM. ∀𝑐 ∈ CRS. 𝐹𝐸𝐶(𝑐, 𝑠𝑚) = ∑ 𝑒𝑡(𝑡) ∙ (
𝑓𝑚𝑎𝑥

𝑡𝑠𝑑𝑓(𝑡)
)3

𝑡∈TSK(c,sm)

(43)

where 𝑇𝑆𝐾(𝑐, 𝑠𝑚) is defined as the set of tasks mapped to a core 𝑐 in scheduling model

𝑠𝑚:

𝑇𝑆𝐾(𝑐, 𝑠𝑚) = {𝑡 ∈ 𝑇𝑆𝐾 | 𝑎𝑙𝑙𝑜𝑐𝑡(𝑠𝑚) = 𝑐}

The total energy consumption of all the cores 𝐹𝐸𝐶(𝑠𝑚) can then be calculated as follows:

𝐹𝐸𝐶(𝑠𝑚) = ∑ 𝐹𝐸𝐶(𝑐, 𝑠𝑚)𝑐∈𝐶𝑅𝑆 (44)

78

The energy 𝐹𝐸𝑅(𝑟, 𝑠𝑚) consumed at any router 𝑟 ∈ RTR for all its messages can be

calculated as,

∀𝑠𝑚∈SSM. ∀𝑟 ∈ 𝑅𝑇𝑅.

𝐹𝐸𝑅(𝑟, 𝑠𝑚) = ∑ 𝑚𝑑(𝑚) ∙ (
𝑓𝑚𝑎𝑥

𝑚𝑠𝑑𝑓(𝑚)
)3

𝑚∈𝑀𝑆𝐺(𝑟,𝑠𝑚) (45)

where 𝑀𝑆𝐺(𝑟, 𝑠𝑚) is defined as the set of all the messages going through router 𝑟 in

scheduling model 𝑠𝑚. The total energy consumption of all the routers 𝐹𝐸𝑅(𝑠𝑚) can

then be calculated as follows:

𝐹𝐸𝑅(𝑠𝑚) = ∑ 𝐹𝐸𝑅(𝑟, 𝑠𝑚)𝑟∈𝑅𝑇𝑅 (46)

In every calculation, we assumed 𝑓𝑚𝑎𝑥 = 1.

The whole energy consumption of a system for a concrete scheduling model 𝑠𝑚, 𝐹𝐸(𝑠𝑚),

is calculated from the energy consumption of all the routers and cores as follows:

𝐹𝐸(𝑠𝑚) = 𝐹𝐸𝐶(𝑠𝑚) + 𝐹𝐸𝑅(𝑠𝑚) (47)

The average 𝐹𝐸 energy consumption 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 of all cores for all scheduling models

with DS can be calculated as follows:

𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 =
1

(|𝑆𝑆𝑀|−1)
∙ ∑ ∑ 𝐹𝐸𝐶(c,sm)

|𝐶𝑅𝑆−1|
𝑐=0𝑠𝑚∈(SSM/{𝑆𝑀0}) (48)

The average energy consumption 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 of all routers for all scheduling models with

DS can be calculated as follows:

𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 =
1

(|𝑆𝑆𝑀|−1)
∙ ∑ ∑ 𝐹𝐸𝑅(r,sm)

|𝑅𝑇𝑅−1|
𝑟=0𝑠𝑚∈(SSM/{𝑆𝑀0}) (49)

The average 𝐹𝐸 energy consumption for all scheduling models with DS can be calculated

as follows:

𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛 = 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛 + 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛 (50)

5.6.2. Energy reduction

MeSViz compares the 𝐹𝐸 reduction of cores (𝑅𝑒𝐹𝐶𝐶) and routers (𝑅𝑒𝐹𝐸𝑅) combined

with 𝑆𝑀0, which uses SS, and the average 𝐹𝐸 of all the other scheduling models with DS

𝑆𝑀𝑥. The relative reduction of the average 𝐹𝐸 for the scheduling models with DS

𝑠𝑚∈(SSM/{𝑆𝑀0}, compared to the 𝐹𝐸 of the scheduling model with SS 𝑆𝑀0, are

computed separately for 𝑆𝑀 cores 𝑅𝑒𝐹𝐸𝐶(𝑆𝑀), average cores (𝑅𝑒𝐹𝐸𝐶), 𝑆𝑀 routers

𝑅𝑒𝐹𝐸𝑅(𝑆𝑀), (𝑅𝑒𝐹𝐸𝑅), each SM (𝑅𝑒𝐹𝐸𝑠𝑚) and combined (𝑅𝑒𝐹𝐸) as follows:

𝑅𝑒𝐹𝐸𝐶(𝑆𝑀) =
𝐹𝐸𝐶(𝑆𝑀0) − 𝐹𝐸𝐶(𝑆𝑀)

𝐹𝐸𝐶(𝑆𝑀0)
∙ 100%

 (51)

𝑅𝑒𝐹𝐸𝑅(𝑆𝑀) =
𝐹𝐸𝑅(𝑆𝑀0) − 𝐹𝐸𝑅(𝑆𝑀)

𝐹𝐸𝑅(𝑆𝑀0)
∙ 100% (52)

79

𝑅𝑒𝐹𝐸𝐶 =
𝐹𝐸𝐶(𝑆𝑀0) − 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝐶(𝑆𝑀0)
∙ 100%

 (53)

𝑅𝑒𝐹𝐸𝑅 =
𝐹𝐸𝑅(𝑆𝑀0) − 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸𝑅(𝑆𝑀0)
∙ 100% (54)

𝑅𝑒𝐸𝑠𝑚 =
𝐹𝐸(𝑆𝑀0)−F𝐸(𝑆𝑀)

𝐹𝐸(𝑆𝑀0)
∙ 100%

 (55)

𝑅𝑒𝐹𝐸 =
𝐹𝐸(𝑆𝑀0)−𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

𝐹𝐸(𝑆𝑀0)
∙ 100%

 (56)

5.7. Memory and meta-schedules

To avoid wasting memory and reaching the memory limits of NoCs and MPSoCs (e.g.,

ARM11, ARM7 4kB cache, and 256K private), we aim to extend the methods used in

[25, 128] and combine them with our own approach. In [25, 128], the stored memory of

𝑆𝑆𝑀 for message duplication is reduced, but we combined (the stored memory) with a

task duplication method, which made SSM memory usage more efficient.

Figure 28 represents the effects of a core fault and slack event on 𝑆𝑆𝑀, and Figure 29

shows how many share points and how much duplicated data (in this case tasks) are stored

in related 𝑆𝑀𝑠, thus wasting memory space. For example, 𝑆𝑀2 and 𝑆𝑀3 have similar

amounts of data.

0

1

2

Event1: Core Fault
CRS3

 Event0: Slack
(TSDF T1,T4)

3

Event2: Core Fault
CRS2

Figure 28. Events state in s schedule tree

80

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3

T2

T1

T0

Time

CRS 4

CRS 3

CRS 2

CRS 1

CRS 0

T4

T3T2

T1

T0

SM
0

SM
1

SM
2

SM
3

SM1= SM0(T0)+ changes(T1...T4)

SM2= SM1(T1.T4)+ changes(T2,T3)

SM3= SM2(T0,T1,T2,T4)+
changes(T3)

FLT0

FLT0

FLT1
Time

Slack

Slack

e0 e1 e2

Figure 29. Schedules share points regarding task changes and Figure 28

5.7.1. Convergence of meta-schedules for saving memory

Due to the number of events, 𝑁𝑒 , number of schedules in an 𝑆𝑆𝑀

𝑁𝑠𝑠𝑚, and memory size limitation in embedded systems, 𝑀𝑙𝑖𝑚, increasing 𝑁𝑒 can cause

increases in consumption of memory by the stored schedules.

5.7.2. Memory consumption

If we assume the number of tasks with slack is 𝑁𝑡𝑠𝑘_𝑠 = 10, and cores with faults is

𝑁𝑓𝑙𝑡(𝑐), 𝑁𝑡𝑠𝑘 = 12 (meaning two tasks do not have slack), and

𝑁𝑚𝑠𝑔 = 14, then 𝑁𝑒 = 𝑁𝑡𝑠𝑘_𝑠 + 𝑁𝑓𝑙𝑡(𝑐), which in this case is 𝑁𝑒 = 14.

We assume the memory storage needed to store each task by default is 𝑀𝑡𝑠𝑘 = 5 𝐵𝑖𝑡𝑒

and for each message is 𝑀𝑚𝑠𝑔 = 5 𝐵𝑖𝑡𝑒.

If 𝑁𝑠𝑠𝑚 = 2𝑁𝑒 then 𝑁𝑠𝑠𝑚 = 214, which is equal to 16384 schedules. According to the

platform structures (e.g., Xilinx, ARM Cortex, and Intel Arria) and operating system, the

memory addressing and storage methods vary.

The memory storage space for each schedule is equal to 𝑀𝑠𝑚 = 𝑀𝑡𝑠𝑘 × 𝑁𝑡𝑠𝑘 + 𝑀𝑚𝑠𝑔 ×

 𝑁𝑚𝑠𝑔 , which in this case is equal to the following:

𝑀𝑠𝑚 = 5 × 12 + 5 × 14; 𝑀𝑠𝑚 = 70𝐵.

81

Total memory space for each 𝑆𝑆𝑀 can be calculated as 𝑀𝑠𝑠𝑚 = 𝑀𝑠𝑚 × 𝑁𝑠𝑠𝑚, which in

this case is 𝑀𝑠𝑠𝑚 = 70 ∗ 16384; 𝑇𝑀𝑚𝑠𝑐ℎ = 1,146,880.

The results of 𝑀𝑠𝑠𝑚 show that, with an increasing number of events, tasks, and messages,

it is vital to find a controlling solution to reduce memory consumption for critical

embedded systems.

To solve the memory consumption problem, we must look at the changes in schedules

after events. Therefore, we designed and tested the Example 16 in 7.3.1.1.

If 𝑁𝑐ℎ(𝑚𝑠𝑔) is the number of messages changed and 𝑁𝑐ℎ(𝑡𝑠𝑘)is the number of tasks

changed, then the total real space without data duplication 𝑀𝑟𝑒𝑎𝑙(𝑠𝑠𝑚)that is needed for

the whole scenario is equal to the following:

𝑀𝑟𝑒𝑎𝑙(𝑠𝑠𝑚) = ∑ (𝑁𝑐ℎ(𝑚𝑠𝑔) × 𝑀𝑚𝑠𝑔 + 𝑁𝑐ℎ(𝑡𝑠𝑘) × 𝑀𝑡𝑠𝑘)
𝑁𝑠𝑠𝑚
𝑖=0 (57)

5.7.3. Delta scheduling technique and delta tree

With Algorithm 3, we see the parent and child schedule changes and differences (e.g.,

parent schedule SM0 and child SM1), which we call the delta scheduling technique (DST).

All 𝑫𝑺𝑻 (e.g., 𝐷𝑆𝑇 (𝑆𝑀0, 𝑆𝑀1)) data discovered will be stored on a specific tree, known

as the delta tree (DT).

The value of saving duplicated memory is calculated as follows:

𝑆𝑎𝑣𝑀 = 𝑀𝑠𝑠𝑚 − 𝑀𝑟𝑒𝑎𝑙(𝑠𝑠𝑚) (58)

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑫𝑻𝑺 (𝑺𝑴𝒙, 𝑺𝑴𝒙+𝟏)

𝐼𝑓 𝑆𝑀𝑥 𝑖𝑠 𝑃𝑎𝑟𝑒𝑛𝑡 𝑎𝑛𝑑 𝑆𝑀𝑥+1 𝑖𝑠 𝐶ℎ𝑖𝑙𝑑 →

(𝑎)

 𝐹𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑁𝑚𝑠𝑔; 𝑖 + +)

 𝐼𝑓 (𝑆𝑀𝑥(𝑀[𝑖]. 𝑖𝑛𝑗𝑒𝑐𝑡_𝑡𝑖𝑚𝑒) ≠ 𝑆𝑀𝑥+1(𝑀[𝑖]. 𝑖𝑛𝑗𝑒𝑐𝑡_𝑡𝑖𝑚𝑒)
 {

 𝐴𝑑𝑑 𝑆𝑀𝑥+1(𝑀[𝑖]) 𝑡𝑜 𝐷𝑇 (𝑆𝑀𝑥+1)
 𝑁𝑐ℎ(𝑚𝑠𝑔) + +;

 }

(𝑏)

 𝐹𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 𝑁𝑡𝑠𝑘; 𝑖 + +)
 𝐼𝑓 (𝑆𝑀𝑥(𝑇[𝑖] 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒) ≠ 𝑆𝑀𝑥+1(𝑇[𝑖] 𝑠𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒))
 𝑂𝑅
 (𝑆𝑀𝑥(𝑇[𝑖] 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒) ≠ (𝑆𝑀𝑥+1(𝑇[𝑖] 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒)
 {
 𝐴𝑑𝑑 (𝑆𝑀𝑥+1(𝑇[𝑖] 𝐸𝑛𝑑 𝑡𝑖𝑚𝑒) 𝑡𝑜 𝐷𝑇 (𝑆𝑀𝑥+1)
 𝑁𝑐ℎ(𝑡𝑠𝑘) + +;

 }
Algorithm 3. DTS discover and calculating changes for messages (a) and tasks (b)

6 The part of data and results and examples are used on [128].

82

When the platform for the event needs to decode 𝐷𝑇, it only requires access to the 𝐷𝑇

(𝑆𝑀𝑥+1) and its parent (c.f., Figure 30).

Figure 30. Decoding schedules from delta tree (DT)

Figure 31. Delta tree (DT) data model

Therefore, rather than storing complete schedule data in the memory, we can encode

graphs to DT by replacing duplicate data with changed data (cf. Figure 31). When it needs

to decode 𝐷𝑇𝑆(𝐼𝐷[𝑛]), adding changes to the running schedule (concerning the event

and timing, as introduced in Figure 30 and [128]), it can run without delay.

In [128], we assumed memory needed to store each message is 𝑀𝑚𝑠 = 4 Bite, and it only

supports memory space for messages.

5.8. Summary

In this section, we introduced MeSViz algorithms and functions to help the system

designer find bugs or conflicts in MeS results concerning AM, PM, CM, and MeS

algorithms (e.g., objective function).

In addition, we introduced 𝐷𝑆𝑇 and 𝐷𝑇 and discussed how they can improve memory-

saving capacity, evaluating them using three examples.

SMx

DTS
(SMx+1)

SMx+1

SM0

DTS (ID0,1)

DTS (ID1,2) DTS (ID1,3)

DTS (ID0,4)

DTS (ID4,5)

83

84

CHAPTER 6: IMPLEMENTATION

6.1. Schema modelling

MeS is a novel flexible architecture for scenario-based scheduling in adaptive time-

triggered systems. To achieve this in embedded systems, MeS is modelled conceptually

in several structures. Figure 32 illustrates how the system designer uses the schema

method. The method has valuable benefits in terms of saving time and costs, making it

simple and fast to every input files via a schema editor, using a general schema model for

reference.

Schem Model

Schema Editor

Raw input Data

Requested structures

validation

XMLTemplate

XML is Valid

MeS

Yes

No

XML Input

models

Figure 32. Schema technique for standard data structure modelling

Table 5 presents a raw data model using regular input data.

Table 5. Sample raw input data before forming in XML format

Application Data

Task ID=0 ET=50energy=[1,100]

Task ID=1 ET=60energy=[1,100]

Task ID=2 ET=42energy=[1,100]

Msg. ID=0 from job#2 to job#1

Msg. ID=1 from job#0 to job#4

Msg. ID=2 from job#1 to job#3

Physical Data

Router ID5 energy=[0,100]

Router ID6 energy=[0,100]

Endsystem ID0 energy=[0,100]

Endsystem ID1 energy=[25,100]

Link ID=0 from node#0 to node#5

Link ID=1 from node#1 to node#5

Link ID=2 from node#2 to node#5

85

6.2. Implementation of the data model

To create correct data as an input for MeS, data formats for the PM, AM, SM, and CM

must be defined. These data formats can be expressed using an XML schema.

The Oxygen7 XML editor was used here to describe the structure of the documents for

AM, PM, and CM. The goal of an XML schema is to prepare the common standard

building blocks of an XML document (cf. overview of SM in Figure 33).

< 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙 𝑒𝑣𝑒𝑛𝑡_𝐼𝐷 = "" 𝐼𝐷 = "" 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = "" >

 < 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 > {1,1} </𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 >

 < 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑀𝑜𝑑𝑒𝑙 > {1,1} </𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑀𝑜𝑑𝑒𝑙 >

 < 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑀𝑜𝑑𝑒𝑙 𝑒𝑣𝑒𝑛𝑡_𝐼𝐷 = "" > {1,1} </𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑀𝑜𝑑𝑒𝑙 >

</𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙 >

Figure 33. Overview of scheduling models

6.3. Implementation of meta-scheduling (MeS)

The MeS architecture, as shown in Figure 34, uses IBM ILOG CPLEX optimization C++

libraries to solve the scheduling problems and generate optimum solutions [129].

Figure 34. The simple architecture of meta-scheduling (MeS)8

To generate a static schedule with CPLEX, the system designer must describe the problem

(c.f., section 3.5) using decision variables (c.f., section 3.8), constants, constraints, and an

objective function (c.f., section 3.11). To solve the scheduling algorithms in this work,

IBM ILOG CPLEX uses barrier optimizers. The MIQP method can obtain an optimal

solution, while MeS establishes an MIQP problem to find a global optimum.

MeS uses the LibXML++ 9 parser to parse XML input data. MeS is designed in a modular

and object-oriented style, with each component implemented as a separate C++ class.

7 Oxygen XML Editor http://www.oxygenxml.com/xml_editor.html
8 This concept and figure is used on Safepower D3.8 [3].
9 The GNOME project - https://developer.gnome.org/libxml++-tutorial/stable/index.html

86

6.3.1. XML

The PM, AM, and CM elements (e.g., nodes, tasks, messages, faults) must comply with

the data format of the schema.

As the first step in MeS, a parser reads and processes all data in the XML files to establish

the AM, PM, and CM data structures (cf. Algorithm 4).

Algorithm 4. XML parser

All the raw input information (e.g., Table 5) is modeled in the schema format via the

Oxygen XML editor to describe the structure of XML documents. This helps us to prepare

the standard and flexible standard building blocks of an XML document in all MeS

generations. Figure 35 is a sample of standardized input XML for use in MeS, validated

by the schema editor.

When the processing of the input models in XML format is complete, they are stored

internally in MeS as a data structure. For defined scenarios in CM, every generated

schedule and depended 𝑆𝑀, which are stored in an SM class, is added as a node in the

SM tree.

87

< 𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 >

< 𝑇𝑎𝑠𝑘 𝐼𝐷 = "0" 𝑊𝐶𝐸𝑇 = "2" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "1" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100" 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = "1100"/>

< 𝑇𝑎𝑠𝑘 𝐼𝐷 = "1" 𝑊𝐶𝐸𝑇 = "4" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "1" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100" 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = "1600"/>

< 𝑇𝑎𝑠𝑘 𝐼𝐷 = "2" 𝑊𝐶𝐸𝑇 = "6" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "1" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100" 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = "1305"/>

< 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝐼𝐷 = "0" 𝑓𝑟𝑜𝑚 = "0" 𝑡𝑜 = "1" 𝑠𝑖𝑧𝑒 = "10" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "1" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100" 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = "1185"/>

< 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 𝐼𝐷 = "1" 𝑓𝑟𝑜𝑚 = "1" 𝑡𝑜 = "2" 𝑠𝑖𝑧𝑒 = "10" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "1" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100" 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 = "1185"/>

</𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑀𝑜𝑑𝑒𝑙 >

< 𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑀𝑜𝑑𝑒𝑙 >

< 𝑛𝑜𝑑𝑒 𝐼𝐷 = "0" 𝑇𝑦𝑝𝑒 = "𝑠𝑤𝑖𝑡𝑐ℎ" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "0" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100"/>

< 𝑛𝑜𝑑𝑒 𝐼𝐷 = "1" 𝑇𝑦𝑝𝑒 = "𝑠𝑤𝑖𝑡𝑐ℎ" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "0" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100"/>

< 𝑛𝑜𝑑𝑒 𝐼𝐷 = "2" 𝑇𝑦𝑝𝑒 = "𝑠𝑤𝑖𝑡𝑐ℎ" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "0" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100"/>

< 𝑛𝑜𝑑𝑒 𝐼𝐷 = "3" 𝑇𝑦𝑝𝑒 = "𝑒𝑛𝑑𝑠𝑦𝑠𝑡𝑒𝑚" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "0" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100"/>

< 𝑛𝑜𝑑𝑒 𝐼𝐷 = "4" 𝑇𝑦𝑝𝑒 = "𝑒𝑛𝑑𝑠𝑦𝑠𝑡𝑒𝑚" 𝑚𝑖𝑛_𝑒𝑛𝑒𝑟𝑔𝑦 = "25" 𝑚𝑎𝑥_𝑒𝑛𝑒𝑟𝑔𝑦 = "100"/>

< 𝑙𝑖𝑛𝑘 𝐼𝐷 = "0" 𝑓𝑟𝑜𝑚 = "0" 𝑡𝑜 = "1"/>

< 𝑙𝑖𝑛𝑘 𝐼𝐷 = "1" 𝑓𝑟𝑜𝑚 = "1" 𝑡𝑜 = "2"/>

< 𝑙𝑖𝑛𝑘 𝐼𝐷 = "2" 𝑓𝑟𝑜𝑚 = "3" 𝑡𝑜 = "0"/>

< 𝑙𝑖𝑛𝑘 𝐼𝐷 = "3" 𝑓𝑟𝑜𝑚 = "4" 𝑡𝑜 = "1"/>

</𝑃𝑙𝑎𝑡𝑓𝑜𝑟𝑚𝑀𝑜𝑑𝑒𝑙 >

< 𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑀𝑜𝑑𝑒𝑙 >

< 𝑆𝑙𝑎𝑐𝑘𝐸𝑣𝑒𝑛𝑡 𝑗𝑜𝑏 = "0" 𝑁𝑒𝑤𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = "50"/>

< 𝑆𝑙𝑎𝑐𝑘𝐸𝑣𝑒𝑛𝑡 𝑗𝑜𝑏 = "1" 𝑁𝑒𝑤𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = "50"/>

< 𝐹𝑎𝑢𝑙𝑡𝐸𝑣𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 = "𝑐𝑟𝑎𝑠ℎ" >

< 𝑁𝑜𝑑𝑒𝐹𝑎𝑢𝑙𝑡 𝑁𝑜𝑑𝑒𝐼𝑑 = "0"/>

</𝐹𝑎𝑢𝑙𝑡𝐸𝑣𝑒𝑛𝑡 >

< 𝐹𝑎𝑢𝑙𝑡𝐸𝑣𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 = "𝑐𝑟𝑎𝑠ℎ" >

< 𝑁𝑜𝑑𝑒𝐹𝑎𝑢𝑙𝑡 𝑁𝑜𝑑𝑒𝐼𝑑 = "1"/>

</𝐹𝑎𝑢𝑙𝑡𝐸𝑣𝑒𝑛𝑡 >

</𝐶𝑜𝑛𝑡𝑒𝑥𝑡𝑀𝑜𝑑𝑒𝑙 >

Figure 35. Standardized input XML sample

6.4. Implementation of meta-scheduling visualization tool (MeSViz)

MeSViz uses ChartDirector [130] to design extensive chart types and the Graphviz [131]

format for the GVEdit application and other graph generator tools.

88

When all the schedules are generated, the visualizer begins to process AM, PM, and SM

for Basic Visualizer (BV). BV is the core of MeSViz.

6.4.1. Outputs and formats

MeSViz generates three graphical files and two text files.

Schd_Vis_XXXXX.png: This file is the primary output of each schedule (XXXXX is the

schedule ID).

MetaSchd_Vis_XX_YY.png: This file is advanced output (XX and YY are the IDs of

relevant schedules), which visualizes, calculates, and presents the difference between two

related schedules (before and after an event) in the tree of scheduled events (e.g., Figure

26).

Output.txt: This file includes all possibilities for nodes and events and shows all wrong

or correct data. It is built by the scheduler (e.g., Figure 36).

𝑑𝑖𝑔𝑟𝑎𝑝ℎ 𝐺 {

0−> 1 [𝑙𝑎𝑏𝑒𝑙 = "𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡 (𝑇𝑎𝑠𝑘 #6, 𝑛𝑒𝑤 𝐸𝑇 = 10)"𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛] ;

1−> 2 [𝑙𝑎𝑏𝑒𝑙 = "𝑆𝑙𝑎𝑐𝑘 𝐸𝑣𝑒𝑛𝑡 (𝑇𝑎𝑠𝑘 #8, 𝑛𝑒𝑤 𝐸𝑇 = 10)"𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛] ;

2 → 3 [𝑙𝑎𝑏𝑒𝑙 = Slack Event (Task #0, new ET=25)𝑐𝑜𝑙𝑜𝑟 = 𝑔𝑟𝑒𝑒𝑛];

 }

Figure 36. Example a textual data with three nodes

Graph_Tree.png: GVEdit reads the graph tree output of MeS and generates a graph map.

Figure 26 is the result of the above example.

6.4.2. Single schedule Gantt mapping

Each Gantt map contains numerous data (cf. Figure 25):

 The schedule ID (SMx) on the top row

 The total makespan time

 The cores and routers ID on the left

 The message ID, sender, and recover task, injection time, 𝐷𝑢, visited H and

routers on the bottom row with black color

 The task ID, execution time of each task, WCET, finishing time, and related core

at the bottom

 Each task is aligned with the exact start and finish time and node coordination, in

a green color and with its label

 Each message is aligned with the exact time and router coordination, in a blue

color and with corresponding labels

 The yellow line is used by the sender, and the green line is used for the receiver

task of the message

89

6.4.3. Multi-schedule Gantt mapping

For each event in the schedule model, a multi Gantt map is created by a combination and

overlap of two schedules (parent and child) for better detection of the differences between

them. This overlap model displays all the changes occurring after the event, which helps

it to compare related schedules (e.g., Figure 27). These data include the following:

 The event time, indicated by a vertical red line

 The schedule elements for the parent are darker than those for the child

 Changes on makespan

 Event information (e.g., timing)

 Tracking of changes to tasks and messages

 The parent and child ID at the top

6.4.4. Graph mapping of meta-schedules

Graph mapping of schedules is the final step in visualization. For simple models – and in

this work – Graphviz10 is used. For big data, the yEd11 graph editor and Gephi12 can be

used. Each graph shows the following:

 The schedule ID (𝑆𝑀𝑥) on each node

 Event details (e.g., event name, timing, task ID)

 Each event connected by a specific color

10 www.graphviz.org
11 www.yworks.com
12 gephi.org

90

91

Chapter 7: Evaluation example scenarios and results

This section presents the results of the linearized MIQP13 model and evaluates the MeS

results, visualized using MeSViz. MeS and MeSViz were run on a virtual cluster machine

with 12 cores of a 𝐼𝑛𝑡𝑒𝑙 𝑋𝑒𝑜𝑛 𝐸5 − 2450 2.2 𝐺𝐻𝑧 and 60𝐺𝐵 𝑅𝐴𝑀 on Ubuntu

14.04.5 (𝐺𝑁𝑈/𝐿𝑖𝑛𝑢𝑥 3.13.0 − 100 − 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑥86_64).

7.1. Evaluation objectives

The goal of this section is to evaluate all the model, algorithms, and formula introduced

in previous chapters. To achieve this, we designed scenarios for both different and similar

domains (c.f., Table 6).

Table 6. Difference between the designed scenarios

Section TSDF MSDF Multi-task Dynamic-

slack

Core fault Save

memory

7.3.1 Y N N Y N Y

7.3.2 Y Y N Y N Y

7.3.3 Y Y Y Y N Y

7.3.4 Y Y Y Y N Y

7.3.5 Y Y Y Y Y N

7.2. Visualizing scenario-based meta-schedules for adaptive time-triggered

systems (TTS)

The primary goal is to prepare a visualizer for visualizing meta-schedules as Gantt

mappings. MeSViz helps engineers and developers to quickly obtain an overview of

schedule behavior for different events.

7.2.1. Simple model

This model is designed with limited conditions and elements and the properties are as

follows.

7.2.1.1. Schedule model (SM) content

The AM includes five tasks and 𝑠𝑒𝑣𝑒𝑛 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠, while the PM includes seven nodes

(𝑓𝑖𝑣𝑒 𝑐𝑜𝑟𝑒𝑠 and 𝑡𝑤𝑜 𝑟𝑜𝑢𝑡𝑒𝑟𝑠). The CM includes 𝑓𝑖𝑣𝑒 𝑠𝑙𝑎𝑐𝑘 events with

𝑁𝑒𝑤𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 = 50, 𝑓𝑖𝑣𝑒 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 events with new energy levels, and

𝑠𝑒𝑣𝑒𝑛 𝑓𝑎𝑢𝑙𝑡𝑠 via node crashes.

13 linearization switch for QP, MIQP (IBM).

ibm.com/support/knowledgecenter/en/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/QToLin.html

92

7.2.1.2. Output results

The basic visualizer generates 94 Gantt maps from the basic scheduler (Figure 25), and

MeSViz generates six Gantt maps (Figure 27) from MeS. GVEdit generates graph

mapping with 37 nodes.

Figure 37 is a sample of 94 visualized schedules generated by MeSViz. It represents the

information needed by the system designer to control and manage the schedule behavior.

This includes the following:

 Messages and task allocations

 𝑆𝐷𝐹 for each task and message

 Message dependency for sender and receiver task, routing paths, injection time,

and 𝐷𝑀

 Task execution time and finishing time

 Total schedule time

Figure 37. Static slack (SS) schedule model (SM) generated by meta-scheduling visualization tool

(MeSViz)

7.2.2. Complex model (CM)

This model was designed with more elements to control performance.

7.2.2.1.1. Schedule model (SM) content

The AM included 15 tasks and 15 messages, while the PM included 20 nodes (16 cores

and 4 routers). The CM included 14 slack events with NewExecutionTime, 13 faults with

93

node crashes, 14 faults with link faults and babbling idiots, and 14 faults with message

omission events.

7.2.2.1.2. Output results

BV generated 3048 Gantt maps from the basic scheduler, and the meta-visualizer

generated 35 meta-visual Gantt maps from MeS. GVEdit generated a graph map with 37

nodes.

Figure 38 represents the schedule tree, with each node containing an SM identifier and

each edge representing the schedule status (e.g., 𝑆𝑡𝑎𝑡𝑢𝑠 = 0...𝑖𝑛𝑣𝑎𝑙𝑖𝑑 and 𝑆𝑡𝑎𝑡𝑢𝑠 =

1...𝑣𝑎𝑙𝑖𝑑), the energy reduction value, occurred events (e.g., slack), task identifier, and

new execution time.

Figure 38. Schedule tree with 94 schedules (created via meta-scheduling visualization tool (MeSViz) and

GVEdit)

Figure 39 shows the Gantt map for one specific schedule with 𝑆𝑀44, generated by MeS

and visualized using MeSViz. Figure 39 includes all the data useful for debugging and

implementation.

2

2

2

1

1

1

1

Status=1,Eng=30.1004%,Slack Event(job#3,new ET=4)

Status=1,Eng=14.1373%,Slack Event(job#1,new ET=2)

Eng=36.5001%,Slack Event(job#4,new ET=5)

Eng=33.1004%,Slack Event(job#4)

Status=1,Eng=30.3806%,Slack

Status=1,Eng=30.38

Status=1,Eng=33.7803%

94

Figure 39. Gantt map of schedule ID 44

For example, it shows that, of five cores, only two are used. It indicates how the tasks and

messages are allocated and depend on one another, the values of the 𝑇𝑆𝐷𝐹 for each task

and 𝑀𝑆𝐷𝐹 message, the scheduled status, the energy reduction rate, the message path

from one hop to another, and the timing of messages and tasks.

7.2.3. Discussion

MeSViz generates Gantt maps and graph maps. After analyzing outputs, we identified

several design faults.

Incorrect configuration: MeSViz helps to detect incorrect input data (e.g., a message

does not connect to a task or makes a wrong loop between cores and routers). If the MeS

has faulty constraints or conditions, generated schedules will be incorrect. A design fault

is illustrated in Figure 40, where 𝑇14 is the sender of 𝑀14 and 𝑇11 is the receiver of

𝑀14. The problem is the execution time of 𝑇11, which finishes earlier than 𝑀14.

95

Figure 40. Incorrect results and information found in the complex schedule

MeS incorrect data: When MeS creates incorrect outputs, incorrect results are shown in

MeSViz – as seen, for example, in Figure 41. 𝑀12, in the old schedule, has the correct

connection to the sender and receiver (𝑇12 and 𝑇13), but the new schedule shows a

crossed line.

Figure 41. Meta-schedule Gantt map generated from meta-scheduling (MeS) class

For evaluation schedules, we must control the direction and slope of the connections

between the sender and receiver of each message (cf. Algorithm 5 and Algorithm 6).

Algorithm 5. Slope Evaluation 1

96

Algorithm 6. Slope Evaluation 2

In Figure 40 and Figure 41, the system designer can easily find any task or message not

correctly aligned.

7.3. Evaluation of meta-scheduling (MeS) results

7.3.1. Convergence results for saving memory

7.3.1.1. Example 1. Sample scenario with four tasks and three messages

In this sample, 𝑁𝑡𝑠𝑘_𝑠 = 4, 𝑁𝑐𝑓 = 0, 𝑁𝑡𝑠𝑘 = 4 (meaning all tasks have slack) and

𝑁𝑚𝑠𝑔 = 3, then 𝑁𝑒 = 4, and therefore 𝑁𝑠𝑚 = 24 .As seen in Figure 45 the number of real

schedules that are saved nodes is 16, which is equal to 𝑄𝑚𝑠𝑐ℎ ; although the numbering

of the IDs is different and is related to the controller parameters in the scheduler (e.g.,

finishing tasks and not representing quantity of schedules).

The results of this example are presented in Figure 42 and Figure 43. Figure 42 represents

the results of the static stack as the starting node SM0, while Figure 43 gives the results

of DS.

Figure 42. Schedule 𝑆𝑀0 with static slack (SS)

97

Figure 43. Schedule 𝑆𝑀1 with dynamic slack (DS)

Figure 44. Comparing two schedules 𝑆𝑀0 (Figure 42) and 𝑆𝑀1 (Figure 43) after slack

98

Figure 44 represents a comparison between SS and DS. Figure 45 is a graph of node

dependency after DS has occurred for each task, and it is generated by Graphviz using

the output code below.

Figure 45. Graph output of node dependency

The vertical event pointer line (in red color) in Figure 44 highlights that the DS event for

T0 on time 250𝜇𝑠 and other information indicates makespan from 1860𝜇𝑠 is reduced to

1610𝜇𝑠 and 𝑇0 WCET value from 500𝜇𝑠 is reduced to 250𝜇𝑠. The important part of

Figure 44 refers to three changes to messages and four to tasks.

The memory storage for each schedule is equal to the following:

𝑀𝑠𝑚 = 5 × 4 + 5 × 3; 𝑀𝑠𝑚 = 35.

The total memory space for the whole scenario in this case is equal to the following:

𝑀𝑠𝑠𝑚 = 35 ∗ 16; 𝑀𝑠𝑠𝑚 = 560.

99

Figure 46. Few changes from ID2 to ID3

In Figure 46, the data for message 𝑀2 and tasks 𝑇2 and 𝑇3 changed; while in Figure 47,

only the data of 𝑇3 changed. The data for other tasks and messages remain the same, with

duplicated data for storage time, which leads to a waste of memory.

Figure 47. Minimum changes from 𝑆𝑀37 to 𝑆𝑀38 regarding T3 slack

100

7.3.1.2. Results for delta scheduling technique (DST) and delta tree (DT)

In the next examples (7.3.1.3,7.3.1.4), we extended the model to both messages and tasks

in the same AM, PM, and CM, and we assumed that 𝑀𝑡𝑠𝑘 = 5 𝐵𝑖𝑡𝑒 and 𝑀𝑚𝑠𝑔 = 5 𝐵𝑖𝑡𝑒.

The results of generating the schedules are presented in Table 7.

Table 7. Results of dynamic slack (DS) schedules

𝑠𝑚 𝑁𝑐ℎ(𝑚𝑠𝑔) 𝑁𝑐ℎ(𝑡𝑠𝑘)
𝑁𝑐ℎ(𝑚𝑠𝑔)

× 𝑀𝑚𝑠
𝑁𝑐ℎ(𝑡𝑠𝑘) × 𝑀𝑡𝑠 𝑀𝑠𝑚

𝑆𝑎𝑣𝑀

𝐵𝑦𝑡𝑒
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

(ms)
𝑆𝑎𝑣𝐸

1 3 4 15 20 35 0 1610 14%

2 2 3 10 15 25 10 1460 22%

3 1 2 5 10 15 20 1200 36%

4 0 1 0 5 5 30 950 49%

9 0 1 0 5 5 30 1200 36%

14 1 2 5 10 15 20 1350 28%

15 0 1 0 5 5 30 1100 41%

20 0 1 0 5 5 30 1350 28%

25 2 3 10 15 25 10 1710 9%

26 1 2 5 10 15 20 1450 22%

27 0 1 0 5 5 30 1200 36%

32 0 1 0 5 5 30 1450 22%

37 1 2 5 10 15 20 1600 14%

38 0 1 0 5 5 30 1350 28%

43 0 1 0 5 5 30 1600 14%

The results in Table 8 show that, using 𝐷𝑆𝑇, we are able to save 61% of the memory

without using data compression techniques, which need more computational resources

and consume more energy.

Table 8. Memory consumption and saving via delta scheduling technique (DST)

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

3 4 35 16 560 340 61%

7.3.1.3. Example 2. Sample scenario with seven tasks and five messages and

𝑁𝑠𝑠𝑚 = 128

In this example, we extended scenario Example 2 to

𝑁𝑡𝑠𝑘 = 7, and 𝑁𝑚𝑠𝑔 = 5.

Table 9. Sample results of the 128 generated schedule, and Figure 48 show how the slack

event affects changes from father to child schedule.

101

Table 9. Sample results of Example 2

𝑠𝑚 𝑁𝑐ℎ(𝑚𝑠𝑔) 𝑁𝑐ℎ(𝑡𝑠𝑘)
𝑁𝑐ℎ(𝑚𝑠𝑔)

× 𝑀𝑚𝑠

𝑁𝑐ℎ(𝑡𝑠𝑘)

× 𝑀𝑡𝑠
𝑀𝑠𝑚

𝑆𝑎𝑣𝑀

𝐵𝑦𝑡𝑒
𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛

(ms)
𝑆𝑎𝑣𝐸

1 5 6 25 30 55 5 1610 7%

2 2 3 10 15 25 35 1610 17%

3 4 5 20 25 45 15 1460 22%

108 1 2 5 10 15 45 1391 23%

109 0 2 0 10 10 50 1381 31%

110 0 1 0 5 5 55 1131 38%

114 0 1 0 5 5 55 1210 31%

120 0 1 0 5 5 55 1541 26%

122 0 1 0 5 5 55 1291 34%

128 0 1 0 5 5 55 1281 26%

108 1 2 5 10 15 45 1391 23%

109 0 2 0 10 10 50 1381 31%

110 0 1 0 5 5 55 1131 38%

114 0 1 0 5 5 55 1210 31%

120 0 1 0 5 5 55 1541 26%

Figure 48. Meta-visualization for Example 3 (schedules 𝑆𝑀3 & 𝑆𝑀4)

Table 10. Results of delta scheduling technique (DST) memory saving for Example 2

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

5 7 60 128 7680 6335 82%

102

The results in Table 10 indicate that, using 𝐷𝑆𝑇, we are able to save approximately 82%

of the memory space.

7.3.1.4. Example 3. Big sample with 𝑁𝑡𝑠𝑘 = 9 , 𝑁𝑚𝑠𝑔 = 8 , and 𝑁𝑠𝑠𝑚 = 512

schedules

The last test was designed with 𝑁𝑡𝑠𝑘 = 9, 𝑁𝑡𝑠𝑘_𝑠 = 9, and

𝑁𝑚𝑠𝑔 = 8 message.

Table 11. Sample results for Example 3

𝑠𝑚 𝑁𝑐ℎ(𝑚𝑠𝑔) 𝑁𝑐ℎ(𝑡𝑠𝑘)
𝑁𝑐ℎ(𝑚𝑠𝑔)

× 𝑀𝑚𝑠

𝑁𝑐ℎ(𝑡𝑠𝑘)

× 𝑀𝑡𝑠
𝑀𝑠𝑚 𝑆𝑎𝑣𝑀 𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑆𝑎𝑣𝐸

1 4 5 20 25 45 35 1860 2%

2 3 4 15 20 35 45 1733 10%

3 1 2 5 10 15 65 1733 14%

138 2 3 10 15 25 55 1663 22%

139 0 2 0 10 10 70 1653 29%

197 0 2 0 10 10 70 1543 24%

204 0 2 0 10 10 70 1704 21%

245 0 2 0 10 10 70 1350 36%

246 0 1 0 5 5 75 1100 43%

326 0 1 0 5 5 75 1213 37%

434 0 1 0 5 5 75 1200 42%

469 0 1 0 5 5 75 1710 27%

471 0 1 0 5 5 75 1460 34%

509 0 2 0 10 10 70 1600 29%

510 0 1 0 5 5 75 1350 36%

Table 12. Results of delta scheduling technique (DST) memory saving for Example 3

The results in Table 12 indicate that, using 𝐷𝑆𝑇, we are able to save approximately 82%

of memory space.

7.3.1.5. Discussion

Compared to the DeltaGraph generator [25, 128] results for communication, which show

the memory is optimized by more than 50% in the best case, our results in Figure 49

indicate that 𝐷𝑇𝑆 can be optimized by 61% to 86% in the best case (c.f.,

sections 7.3.1.1,7.3.1.3, and 7.3.1.4).

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

7 9 80 512 40960 35065 86%

103

Figure 49. Comparison of three different scenarios for memory saving with delta scheduling technique

(DTS)

Figure 49 shows that by increasing the 𝑁𝑠𝑠𝑚 with 𝐷𝑆𝑇, the quantity of

𝑁𝑐ℎ(𝑚𝑠𝑔) and 𝑁𝑐ℎ(𝑡𝑠𝑘) increases, which causes the system to save memory and

𝑆𝑎𝑣𝑀 increases. Therefore, 𝑀𝑟𝑒𝑎𝑙(𝑠𝑠𝑚) better guarantees that the permissible memory

limit will not be exceeded.

𝐷𝑆𝑇 𝑖𝑠 𝑎𝑐𝑡𝑖𝑣𝑒 → 𝑀𝑟𝑒𝑎𝑙(𝑠𝑠𝑚) < 𝑀𝑠𝑠𝑚 < 𝑀𝑙𝑖𝑚 (59)

7.3.2. Scenario-based meta-scheduling (SBMeS) for frequency scaling of

processors

Our goal in this section is to optimally schedule the messages and tasks, such that the time

constraints (i.e., task and message deadlines) are satisfied, while total energy consumption

is decreased. A novel algorithm is introduced for scenario-based mapping and scheduling

of tasks and messages onto the NoC platform. The objective is to minimize energy

consumption due to the scenarios.

7.3.2.1. Decision variables

The first step to solving the scheduling problem in MeS is defining the scenarios, decision

variables, constants, and constraints.

7.3.2.2. Slow-down factor

In this case study, we are using only 𝑇𝑆𝐷𝐹 as a decision value.

86%
82%

61%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

S𝑎
𝑣
𝑀

%

𝑁𝑠𝑚 512 128 16

104

7.3.2.3. Objective function

The objective is to maximize energy efficiency. In other words, we wish to minimize

energy consumption by increasing task execution times due to the TSDF by reducing the

frequency of the cores.

∀t ∈ TSK. ∀m ∈ 𝑀𝑆𝐺

𝐶𝑃3(𝑡) = 𝑒𝑡(𝑡) ∙ 𝑡𝑠𝑑𝑓(𝑡)2 (60)

𝑅𝐸𝑆3 = 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (∑ (𝐶𝑃3(𝑡𝑖)
|𝑇𝑆𝐾|
𝑖=1) (61)

7.3.2.4. Input metadata for meta-scheduling (MeS)

This section discusses the results of the MIQP model described above and evaluates the

MeS results, as visualized with MeSViz.

RTR1 RTR2

CRS0 CRS1

CRS2

CRS3

CRS 4

L 0
L 1

L 2

L 3

L 4

Figure 50. The physical model (PM) of case study

Input models: The SM of the case which was designed and tested is shown in Table 15

and Figure 51 for AM and Figure 50 for PM.

J 1

J 2 J 4 J 3

J 0

M0

M1

M2

M3

M4

M5

Figure 51. The application model (AM) of case study

Table 13. Meta-scheduling (MeS) input constant

105

Input Model Input Name ID Data

A
M

𝑇𝑆𝐾 0 WCET=2

1 WCET=4

2 WCET=6

3 WCET=8

4 WCET=10

𝑀𝑆𝐺 Quantity=6 ID start=0

Deadline (𝐷(𝑚)) All task= 1185

𝑡𝑠𝑑𝑓(𝑡) All task: min =1 & max =100

Slack event All task= 50%

P
M

 𝑅𝑇𝑅 Quantity=2 ID start=0

𝐶𝑅𝑆 Quantity=5 ID start=6

𝐿𝑖𝑛𝑘 Quantity=6 ID start=0

7.3.2.5. Outputs and results

Output results: MeS generates 94 schedules. MeSViz generates 31 meta-visual Gantt

maps from MeS. GVEdit generates a graph map with 94 SMs.

7.3.2.6. Overhead

Table 14. Results of delta scheduling technique (DST) memory saving

The results presented in Table 14 show that, using 𝐷𝑆𝑇, we are able to save approximately

78% of the memory space.

7.3.2.7. Discussion

Three samples of collected data from SM outputs are shown in Table 15: the first schedule

(SM0) with SS technique, schedule SM49 with minimum energy reduction, and schedule

SM5 with maximum energy reduction using the DS technique.
Table 15. Some collected results for model example

SM ID Slack Mode Task ID 𝒆𝒕(𝒕) 𝒕𝒔𝒅𝒇(𝒕)

0 Static 0 2 4

1 4 4

2 6 4

3 8 4

4 10 4

49 (Minimum 𝑺𝒂𝒗𝑬𝒔𝒎) Dynamic 0 1 4

1 4 4

2 3 5

3 8 4

4 10 4

5 (Maximum 𝑺𝒂𝒗𝑬𝒔𝒎) Dynamic 0 1 4

1 2 4

2 3 5

3 4 5

4 5 5

In Table 16, the slack mode, energy consumption, and energy-saving of each SM and the

average energy consumption (total DS SMs) are compared to those of the SS SM0. The

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

6 5 55 94 5170 4037 78%

106

results show that the MeS algorithm can reduce energy usage by DS in robust and

adaptive TTS.

Table 16. Energy results for example

SM Slack Mode 𝑭𝑬(𝒔𝒎) 𝑹𝒆𝑭𝑬𝒔𝒎

0 Static 1.875 0

49 Dynamic 1.62 13.6%

5 Dynamic 0.6675 64.4%

Average Dynamic 1.0948 41.61%

7.3.3. Scenario-based meta-scheduling (SBMeS) for frequency scaling of

processors and network-on-chip (NoC)

Communication and task deadlines are critical constraints that scheduling algorithms and

scheduling tools for real-time systems must satisfy. Scheduling algorithms must also have

a significant impact on energy efficiency. For example, the authors in [22] worked on task

scheduling and time constraints to save energy without degrading performance. However,

computing costs and task deadlines are not guaranteed in many algorithms.

In [132], “as soon as possible” (ASAP) and “as late as possible” (ALAP) techniques for

task scheduling are used, but communication scheduling is not considered. Many studies

explain that an interconnection network should be designed to be power-aware and

energy-efficient for satisfying system-level requirements for energy and power (e.g.,

[133]).

In this case, we scheduled each task on a single core of the multi-core processor, such that

the time constraints (i.e., task and message deadlines) were satisfied, while the total

energy consumption was decreased for both cores and routers. Our primary objective was

to find and minimize the total energy consumption by maximizing the 𝑆𝐷𝐹𝑠 for

computations and communication activities using DS and SS event scenarios.

7.3.3.1. Scheduling constraints

Task assignment: In this case study, the task assignment strategy involved assigning one

task to one core.

7.3.3.2. Decision variables

We used both TSDF and MSDF.

7.3.3.3. Input metadata for meta-scheduling (MeS)

The input data for the case, which was designed and tested, is shown in Table 17. In the

PM presented in Figure 53, we used a sample network based on the MPSoC design.

The MeS scheduling and routing methodology is independent of the hardware platform

and can support different network topologies (e.g., mesh, direct network, indirect

network, balanced tree).

107

To compare and measure the efficiency and effectiveness of our method, we used equal

AM and PM structures, as seen in section 7.3.2. The AM and scheduler algorithm were

also extended to use 𝑆𝐷𝐹𝑠 for routers.

Table 17. Meta-scheduling (MeS) input constant devices [13]

Input

Model

Input Name ID Data

AM 𝑇𝑆𝐾 0 WCET=2

1 WCET=4

2 WCET=6

3 WCET=8

4 WCET=10

𝑀𝑆𝐺 Quantity=6 ID start=0

Deadline (𝐷(𝑚)) All task= 1185

𝑡𝑠𝑑𝑓(𝑡) All task and messages: min =1 & max =100

Slack event All task= 50%

PM 𝑅𝑇𝑅 Quantity=2 Start ID==0

𝐶𝑅𝑆 Quantity=5 Start ID==6

𝐿𝑖𝑛𝑘 Quantity=6 Start ID=0

Figure 52 represents the dependencies of the tasks 𝑡 and messages 𝑚, which are used in

the AM. Figure 53 represents the 𝑐𝑜𝑟𝑒𝑠 𝐶𝑅𝑆, 𝑟𝑜𝑢𝑡𝑒𝑟𝑠 𝑅𝑇𝑅, and their connectivity

(𝐿𝑖𝑛𝑘), which are used in the PM.

J 1

J 2 J 4 J 3

J 0

M0

M1

M2

M3

M4

M5

Figure 52. The application model (AM) of the case study [6]

108

RTR1 RTR2

CRS0 CRS1

CRS2

CRS3

CRS 4

L 0
L 1

L 2

L 3

L 4

Figure 53. The physical model (PM) of the case study 7.3.2

7.3.3.4. Outputs and results

MeS generates 94 schedules for slack events. GVEdit generates a graph map with 94

𝑆𝑀𝑠.

7.3.3.5. Discussion

In Table 19, the results of 14 samples of collected data from SM outputs are presented.

The first schedule was generated using the SS technique, with schedule SM49 seeing

minimum energy reduction, while schedules (SM1 to SM93) used the DS technique. The

slack mode, energy consumption, and energy reduction s of each SM and average energy

consumption (total DS SMs) are compared to the SS SM, as presented in Figure 54, Figure

55, Figure 56, and Figure 57.

The results in 7.3.2, presented in Table 18, indicate an average 41.61% energy reduction

at cores only. However, in this work, it is observed that energy reduction in cores is

reduced by 8.5% compared to the results in 7.3.2. In other words, energy reduction is

33.11% for cores, while routers reach 22.66%.

Table 18. Energy results for Example 7.3.2

SM Slack Mode 𝑭𝑬(𝒔𝒎) 𝑹𝒆𝑭𝑬𝒔𝒎

0 Static 1.875 0

49 Dynamic 1.62 13.6%

5 Dynamic 0.6675 64.4%

Average Dynamic 1.0948 41.61%

These results confirm our extended SBMeS algorithm method, with the combination of

DS and 𝑆𝐷𝐹𝑠 reduces energy consumption in the TT MPSoCs. The system has better

energy efficiency in the NoC, while being robust and adaptive in the use of 𝑆𝐷𝐹s for both

cores and routers.

Table 19. General results for a model example

109

𝐒𝐌 𝐈𝐃 𝐂𝐑𝐒 𝐑𝐓𝐑 𝐑𝐞 𝐂𝐑𝐒 𝐑𝐞 𝐑𝐓𝐑 𝐓𝐨𝐭𝐚𝐥 𝐑𝐞 𝐓𝐨𝐭𝐚𝐥

0 1.65 4.03333 0.0000% 0.0000% 5.68333 0.0000%

1 1.3625 2.77778 17.4242% 31.1295% 4.14028 27.1505%

2 1.3325 3.63333 19.2424% 9.9174% 4.96583 12.6246%

5 0.6675 3.14444 59.5455% 22.0386% 3.81194 32.9277%

18 0.9925 3.1444 39.8485% 22.0386% 4.1369 27.2099%

38 1.0225 3.05556 38.0303% 24.2424% 4.07806 28.2452%

44 0.9825 3.05556 40.4545% 24.2424% 4.03806 28.9490%

46 1.1825 3.05556 28.3333% 24.2424% 4.23806 25.4300%

49 1.4625 3.63333 11.3636% 9.9174% 5.09583 10.3372%

63 0.9225 3.14444 44.0909% 22.0386% 4.06694 28.4409%

70 1.2825 3.14444 22.2727% 22.0386% 4.42694 22.1066%

80 1.1 3.05556 33.3333% 24.2424% 4.15556 26.8816%

93 1.38 3.05556 16.3636% 24.2424% 4.43556 21.9549%

Avg 1.10363 3.11918 33.1134% 22.6651% 4.22281 25.6983%

Figure 54. Energy consumption results for cores and routers 𝐹𝐸𝐶(𝑠𝑚) , 𝐹𝐸𝑅(𝑠𝑚) , 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛

, 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

Figure 55. 𝐹𝐸(𝑠𝑚) 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑜𝑑𝑒𝑙𝑠(SMs) results and average 𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

0

1

2

3

4

5

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE

SM ID

FE for CRS and RTR in each schedule

CRS RTR

0

1

2

3

4

5

6

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE

SM ID

FE (SM)

Total

110

Figure 56. Total energy reduction results for cores𝑅𝑒𝐹𝐸𝐶(𝑆𝑀) and routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀) and

average𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛, 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

Figure 57.Total FE reduction results for schedules 𝑅𝑒𝐸𝑠𝑚 and average 𝑅𝑒𝐹𝐸

7.3.3.6. Overhead

Table 20. Results of delta scheduling technique (DST) memory saving

The results in Table 20 show that, using 𝐷𝑆𝑇, we are able to save approximately 77% of

the memory space. Compare to overhead in 7.3.2.6, due to use of 𝑀𝑆𝐷𝐹 and 𝑇𝑆𝐷𝐹 in

this case, 𝑆𝑎𝑣𝑀 about 1% reduced.

0%

10%

20%

30%

40%

50%

60%

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE

SM ID

FE reduction on cores and routers in each SM and average compaerd to

SM0

Re CRS Re RTR

0.%

5.%

10.%

15.%

20.%

25.%

30.%

35.%

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE

SM ID

ReFE for each schedle and average compared to SM0

Re RTR

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

6 5 55 94 5170 3980 77%

111

7.3.4. Scenario-based meta-scheduling (SBMeS) for frequency scaling with

flexible task-to-processor mapping

Unlike in sections 7.3.3 and 7.3.2, where only a single task was assigned per core, the

algorithm presented in this section is able to assign multiple tasks per core on a multi-

core platform. In addition, this section does not introduce a new architecture for SBMeS,

but rather an improved, extended, and more flexible and reliable SBMeS architecture for

MPSoCs and NoCs.

In this section, we examine the importance of the methods and techniques discussed. This

experiment and its results are intended to answer the question of why we require the

SBMeS and DS technique and special energy reduction schemes for both cores and

routers.

7.3.4.1. Input models

The input data for the designed use case are shown in Table 17. Figure 58 concerns the

AM, while Figure 59 and Figure 53 concern the PM of the case study.

 Table 21. Meta-scheduling (MeS) input constant

Input Model Input Name ID Data

AM 𝑇𝑆𝐾 0 WCET=2

1 WCET=4

2 WCET=6

3 WCET=8

4 WCET=10

𝑀𝑆𝐺 Quantity=6 ID start=0

𝑇𝑆𝐷𝐹 All Task: min =1 & max =100

𝑀𝑆𝐷𝐹 All Messages : min =1 & max =100

Slack event All Task= 50%

𝑅𝑇𝑅 Quantity=3 ID start=0

PM 𝐶𝑅𝑆 Quantity=5 ID start=6

𝐿𝑖𝑛𝑘 Quantity=9 ID start=0

T1

T2

T4

T3

T0

M0 M1

M2

M3 M4

M5

Figure 58. The application model (AM) of the case study

In the AM (Figure 58), 𝑇2 and 𝑇0 are starting tasks and 𝑇4 is the final task. In PM, 𝐸𝑆2

with links 𝐿4 and 𝐿6 is connected to two hops, 𝐻1 and 𝐻2. The connection of 𝐸𝑆2 via

112

two links provides greater reliability for the system. This example shows how MeS can

be used to model reliability for safety-critical systems.

CRS4

CRS3

CRS0

CRS1

L7

L5

L2

L3

RTR0 RTR1
L0

RTR2

L1L8

CRS2
L4

L6

Figure 59. The physical model (PM) of the case study

7.3.4.2. Outputs and results

MeS at 200 seconds generated 93 schedules for the DS scenario SSM/{𝑆𝑀0} and one

schedule for the SS 𝑆𝑀0. GVEdit created a graph map from MeSViz output with 94 SMs.

7.3.4.3. Discussion

In Table 22, the results of 14 samples of collected data from SM outputs are presented.

The schedule SM0 is used for the SS time, and the schedule SM1 to SM93 is used for DS

time. As seen in the results, schedule SM5 has lowest energy reduction and schedule SM80

has the highest.

Table 22. General results of 𝐹𝐸 for the example model

𝐒𝐌 𝐈𝐃 𝐅𝐄 𝐂𝐑𝐒 𝐅𝐄 𝐑𝐓𝐑 𝐑𝐞𝐅𝐄 𝐂𝐨𝐫𝐞 𝐑𝐞𝐅𝐄 𝐑𝐓𝐑 𝐅𝐄 𝐑𝐞𝐅𝐄 𝐓𝐨𝐭𝐚𝐥

0 1.65 4.28 0.00% 0.00% 5.88 0.00%

1 1.34 3.06 16.51% 28.57% 4.40 25.28%

2 1.04 2.78 35.20% 35.06% 3.82 35.10%

5 0.69 3.79 57.01% 11.43% 4.48 23.86%

18 0.88 3.06 45.17% 28.57% 3.94 33.10%

38 1 2.50 37.69% 41.56% 3.50 40.50%

44 0.96 2.50 40.19% 41.56% 3.46 41.18%

46 1.16 2.50 27.73% 41.56% 3.66 37.78%

49 1.08 2.78 32.71% 35.06% 3.86 34.42%

63 0.72 3.06 55.14% 28.57% 3.78 35.82%

70 1.08 3.06 32.71% 28.57% 4.14 29.70%

80 1.1 2.03 31.46% 52.47% 3.13 46.74%

93 1.38 2.03 14.02% 52.47% 3.41 41.98%

Avg 1.04 2.85 35.26% 33.37% 3.89 33.89%

113

The 𝐹𝐸 for static SM0 and DS modes 𝑆𝑆𝑀/𝑆𝑀0 results, 𝐹𝐸 reductions 𝑅𝑒𝐹𝐸(𝑆𝑆𝑀/

𝑆𝑀0), an average of 𝐹𝐸 (for cores and routers) and 𝑅𝑒𝐹𝐸𝑡𝑜𝑡𝑎𝑙, as compared to the SM0,

are shown in Figure 60, Figure 61, Figure 62, and Figure 63.

Figure 60. F𝐸𝐶(𝑠𝑚), 𝐹𝐸𝑅(𝑠𝑚) results for cores and routers and average 𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛, 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

Figure 61. 𝐹𝐸(𝑠𝑚) results and average 𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE CRS 1.65 1.34 1.04 0.69 0.88 1 0.96 1.16 1.08 0.72 1.08 1.1 1.38 1.04

FE RTR 4.28 3.06 2.78 3.79 3.06 2.50 2.50 2.50 2.78 3.06 3.06 2.03 2.03 2.85

𝐹
𝐸

SM ID

𝐹𝐸 in each schedule for cores and routers and average

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

FE 5.88 4.40 3.82 4.48 3.94 3.50 3.46 3.66 3.86 3.78 4.14 3.13 3.41 3.89

𝐹
𝐸

SM ID

Total 𝐹𝐸 in each schedule and average

114

Figure 62. 𝐹𝐸 results for cores 𝑅𝑒𝐹𝐸𝐶(𝑆𝑀) and routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀) compare to 𝑆𝑀0 and average

𝐹𝐸𝐶,𝑎𝑣𝑔,𝑑𝑦𝑛, 𝐹𝐸𝑅,𝑎𝑣𝑔,𝑑𝑦𝑛

Figure 63. Total 𝑅𝑒𝐹𝐸(𝑠𝑚) in each schedule compare to 𝑆𝑀0 and average 𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛

These results confirm our theory that, compared to SS time, DS time together with our

MeS algorithm can reduce power consumption of NoCs by using frequency scaling for

both cores and routers.

7.3.4.4. Overhead

Table 23. Results of delta scheduling technique (DST) memory saving

0%

10%

20%

30%

40%

50%

60%

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

ReFE Core 0.00% 16.51 35.20 57.01 45.17 37.69 40.19 27.73 32.71 55.14 32.71 31.46 14.02 35.26

ReFE RTR 0.00% 28.57 35.06 11.43 28.57 41.56 41.56 41.56 35.06 28.57 28.57 52.47 52.47 33.37

𝐹
𝐸

SM ID

Cores and routers𝐹𝐸 reduction in each schedule and average compared

to SM0

0%

10%

20%

30%

40%

50%

0 1 2 5 18 38 44 46 49 63 70 80 93 Avg

ReFE Total 0.00% 25.28 35.10 23.86 33.10 40.50 41.18 37.78 34.42 35.82 29.70 46.74 41.98 33.89

𝐹
𝐸

SM ID

ReFE(sm) in each schedule and average compared to SM0

𝑁𝑚𝑠𝑔 𝑁𝑡𝑠𝑘 𝑀𝑠𝑚 𝑁𝑠𝑚 𝑀𝑠𝑠𝑚 𝑆𝑎𝑣𝑀 (𝐵𝑦𝑡𝑒) 𝑆𝑎𝑣𝑀%

6 5 55 94 5170 4208 81%

115

The results in Table 23 indicate that, using 𝐷𝑆𝑇, we are able to save approximately 81%

of the memory space.

7.3.5. Scenario-based meta-scheduling (SBMeS) for improved reliability

7.3.5.1. Input models

The base input data for all cases are shown in Table 17. Figure 65 is for AM and Figure

64 for PM.

RTR3 RTR2

RTR0 RTR1

CRS0 CRS1

CRS2CRS4

CRS3

L5

L6

L4

L3

L0 L2

L7

L1

L8

L9

Figure 64. The physical model (PM) of the case study

In the AM, 𝑇0 is the first tasks and 𝑇4 and 𝑇5 are the last task. In the PM, 𝑙8 and 𝑙9 are

used for reliability and flexibility in routing.

Figure 65. The application model (AM) of case study

T 1

T 0

T 4T 2

T 3

M0

M3M1

M2

T 5

M4

116

Table 24. The context model (CM) for application model (AM) and physical model (PM) scenarios

𝑆
𝑡𝑎

𝑡𝑢
𝑠 𝑥

G
ro

u
p

S
ce

n
ar

io

T
es

t

𝐶
𝑅

𝑆

𝑅
𝑇

𝑅

𝑇
𝑆

𝐾

𝑀
𝑆

𝐺

L
in

k
s-

ID

S
la

ck

𝑀
𝑆

𝐷
𝐹

𝑇
𝑆

𝐷
𝐹

𝑓
𝑙𝑡

(𝑐
)

1 I 1 1 5 4 6 5 9 6 6 6 0

2 I 1 2 5 4 6 5 9 3 6 6 0

3 I 1 3 5 4 6 5 9 2 6 6 0

4 I 1 4 5 4 6 5 9 1 6 6 0

5 I 2 1 5 4 6 5 9 6 6 6 1

6 I 2 2 5 4 6 5 9 6 6 6 2

7 I 3 1 5 4 6 5 9 0 6 6 1

8 I 3 2 5 4 6 5 9 0 6 6 2

9 I 4 1 5 4 6 5 9 1 6 6 1

10 I 4 2 5 4 6 5 9 1 6 6 2

11 I 4 3 5 4 6 5 9 1 6 6 3

12 II 5 1 5 4 6 5 7 1 6 6 1

13 II 5 2 5 4 6 5 7 1 6 6 2

14 II 6 1 5 4 6 5 7 6 6 6 0

15 II 6 2 5 4 6 5 7 3 6 6 0

16 II 6 3 5 4 6 5 7 0 6 6 1

17 II 7 1 5 4 6 5 7 6 1 6 0

18 II 7 2 5 4 6 5 7 3 1 6 0

19 II 7 3 5 4 6 5 7 1 1 6 0

20 II 8 1 5 4 6 5 7 3 6 1 0

21 II 8 2 5 4 6 5 7 1 6 1 0

22 II 9 1 5 4 6 5 7 0 1 6 1

23 II 9 2 5 4 6 5 7 0 1 6 2

24 II 9 3 5 4 6 5 7 0 1 6 3

117

Table 24 shows the 24 scenario for CM, PM, and AM used in 24 statuses. Nine scenarios

(groups of the same color) in two groups . Group I includes all links and group II without

two links 𝑙8 and 𝑙9.

For example, in group II, scenario five, test one (II5T1 𝑆𝑡𝑎𝑡𝑢𝑠12), links 𝑙8 and 𝑙9 are

disabled, one task has slack, and one core failed. In I4T1 𝑆𝑡𝑎𝑡𝑢𝑠9, every parameter is the

same, with the exception of the links connection. Comparing II8T1 𝑆𝑡𝑎𝑡𝑢𝑠20 to II6T1

𝑆𝑡𝑎𝑡𝑢𝑠14 , it has one core fault without any slack, and the coefficient 𝑀𝑆lowDF for both

is one, which means 𝑇𝑆DF is disabled.

Table 25. Meta-scheduling (MeS) input constant

Input Model Input Name ID Data

AM Task 0 WCET=2

1 WCET=4

2 WCET=6

3 WCET=8

4 WCET=4

5 WCET=4

𝑀𝑆𝐺 Quantity=5ID start=0 Dum=4

Deadline (𝐷(𝑚)) All Task: min =1 & max =100

𝑡𝑠𝑑𝑓(𝑡) All Messages : min =1 & max =100

Slack event All Task= 50%

𝐻𝑜𝑝(𝑅𝑇𝑅) Quantity=4 ID start=0

PM 𝐶𝑅𝑆 Quantity=5 ID start=6

𝐿𝑖𝑛𝑘 Quantity=10 ID start=0

CM (FaultEvent) type=crash type= Slack

Makespan 250-1000

7.3.5.2. Outputs and results

Output results: MeS generates 13 to 1146 schedules for different scenarios. Table 26

presents the results of 𝑆𝑆𝑀𝑥 for each scenario 𝑆𝑡𝑎𝑡𝑢𝑠𝑥 ; thus, for each scenario, total run

time measured by 𝑇𝑖𝑚𝑒𝑠 = 𝑀𝑒𝑠 + 𝑀𝑒𝑠𝑉𝑖𝑠 run times (second), total 𝑅𝑒𝐹𝐸 (SS

schedule energy consumption, compared to an average of DS schedules) and 𝐹𝐸 (all cores

and routers) 𝐹𝐸𝑎𝑣𝑔,𝑑𝑦𝑛 of each scenario are measured and computed.

Table 26. Output results

𝑆
𝑆

𝑀
𝑥

T
o

ta
l

 𝑁
𝑠𝑚

E
ff

ec
ti

v
e

𝑁
𝑠𝑚

R
ea

l
𝑁

𝑠𝑚

T
im

es

(s
ec

o
n

d
s)

𝐹
𝐸

𝑎
𝑣

𝑔
,𝑑

𝑦
𝑛

𝑅
𝑒𝐹

𝐸

1 191 127 64 416 2.35 23,63%

2 46 38 8 348 2.49 19,89%

3 27 23 4 342 2.55 18%

4 15 13 2 335 2.72 12%

5 383 255 128 945 2.31 25,56%

118

6 1146 762 256 3457 2.42 22,14%

7 16 14 2 945 2.96 4,79%

8 32 28 4 1800 2.90 7%

9 30 26 4 735 2.63 15,3%

10 60 52 8 2558 2.59 16,66%

11 120 104 16 4228 2.62 16%

12 30 26 4 792 2.63 15%

13 60 52 8 2565 2.59 16,66%

14 191 127 64 480 2,37 23,63%

15 46 38 8 354 2.49 19,89%

16 16 14 2 940 2.96 4,79%

17 191 127 64 216 40.25 1,28%

18 46 38 8 157 40.31 1,12%

19 27 23 4 137 40.50 0,6%

20 46 38 8 72 26.62 8,55%

21 15 13 4 53 28.79 1,13%

22 16 14 2 131 40.52 0,6%

23 32 28 4 223 40.22 1,31%

24 64 56 16 637 39.08 4,16%

0

7

8

1

9

2 5

3 64

Figure 66. All nodes in a sample schedules tree

Figure 66 is the result of a sample schedule of every schedule and event controller node

(e.g., valid and invalid). For example, red lines are related to schedule event cycles and

node controllers that the scheduler requires (used only in total schedules). The blue line

is related to the controller finishing each task (total and effective schedules). The green

is related to real schedules, used in end system platforms (in total, effective, and real

schedules). Figure 67 shows the final real schedules after removing every control node in

an SBMeS system.

119

0

81

2

Core Fault event

Slack event

Slack event

Figure 67. Real nodes in a sample schedules tree

Figure 68 shows schedule 𝑆𝑀101, generated by MeS and visualized via MeSViz. Figure

68 is generated for one core fault (e.g., 𝑐0 status=0) and six task slack, and presents all

the data needed for debugging and implementation. For example, it shows that, of five

cores, only four are used, and one core is disabled due to a fault. It also concerns how the

tasks and messages are allocated and dependent on one another, the rate of 𝑆𝐷𝐹 for each

task and message, the scheduled status and energy saving rate compared to SS schedule

𝑆𝑀0, the message path from one hop to another, and the timing of messages and tasks.

Figure 68. Combination dynamic slack (DS) and core fault results in 𝑆𝑀101 which generated by meta-

scheduling visualization tool (MeSViz)

7.3.5.3. Discussion

Table 26 represents the results of 11 statuses categorized in the two main groups, with (I)

and without (II) reliability and flexibility on routing 𝑙9 and 𝑙8, and nine scenarios run a

total of 24 times. The schedule 𝑆𝑀0 is used for SS, while others use the DS technique.

The results in Figure 69 indicate that, increasing the number of faults and scenario

conditions (e.g., combination core faults and slack), the quantity of schedules increases

120

(e.g., 𝑆𝑆𝑀0,6,5,14). Figure 70 indicates that, in a core fault scenario (e.g., 𝑆𝑆𝑀6,11,13), the

time for computation and generating schedules is increased, compared to that of DS.

Figure 69. The total number of generated schedules 𝑁𝑠𝑚 for each scenario

Figure 70.Time of computation for scenarios

Figure 71 indicates that, when disabling 𝑀SDF, the 𝐹𝐸 of scenarios (e.g., 𝑆𝑆𝑀18,19,22) is

on average 1544.84% higher than for enabled 𝑀SDF and 𝑇𝑆𝐷𝐹 (e.g., 𝑆𝑆𝑀5,6,7,12). In

addition, compared with disabled 𝑇𝑆𝐷𝐹 scenarios (e.g., 𝑆𝑆𝑀21,22), with disabled 𝑀SDF,

consumes 30.99% more than 𝐹𝐸. The 𝐹𝐸 of disabled 𝑇𝑆𝐷𝐹 scenarios (e.g., 𝑆𝑆𝑀21,22)

is, on average, 1066% higher than for enabled 𝑀SDF and 𝑇SDF (e.g., 𝑆𝑆𝑀5,6,7,12).

0
100
200
300
400
500
600
700
800
900

1000
1100
1200

6 5 14 1 17 11 24 13 10 15 2 18 20 8 23 12 9 3 19 7 16 22 4 21

SM

SSM ID

Number of total generated schedules

0

500

1000

1500

2000

2500

3000

3500

4000

4500

11 6 13 10 8 5 7 16 12 9 24 14 1 15 2 3 4 23 17 18 19 22 20 21

Se
co

n
d

SSM ID

Time of computation for scenarios

121

Figure 71. FE results for each scenario 𝑆𝑆𝑀𝑥

Figure 72 illustrates that DS, of all the scenarios, has the strongest effect on energy

efficiency. For example, in scenarios 𝑆𝑆𝑀1,5,14, all tasks have DS, and 𝑆𝑆𝑀19,22 does not

have DS. In addition, increasing rates of failure in the cores (e.g., 𝑆𝑆𝑀7,8,16,23,24), even

without DS, other techniques (e.g., core or router frequency scaling) can save more energy

than SS.

Figure 72. Total 𝑅𝑒𝐹𝐸(𝑆𝑀𝑀) (percentage) results for each scenario of comparing dynamic schedules

with a static schedule 𝑆𝑀𝑥

The results in Table 27 indicate that disabling or enabling 𝑙8 and 𝑙9 has no effect on

energy saving or energy consumption, other than a small amount in

𝑆𝑆𝑀1 and 𝑆𝑆𝑀114 (at a rate of 0.02 𝐹𝐸), but it increases computation and generating time

– except for a small amount in 𝑆𝑆𝑀7 and 𝑆𝑆𝑀16, where it is decreased at a rate of 5𝑠.

0

3

6

9

12

15

18

21

24

27

30

33

36

39

42

22 19 18 17 23 24 21 20 7 16 8 4 12 9 11 13 10 3 15 2 6 1 5 14

FE

SSM ID

FE of each SSM

0
2
4
6
8

10
12
14
16
18
20
22
24
26

5 1 14 6 15 2 3 13 10 11 9 12 4 20 8 7 16 24 23 17 21 18 22 19

P
er

ce
n

ta
ge

SSM ID

𝑅𝑒𝐹𝐸(𝑆𝑀𝑀) for each scenario

122

Table 27. Redundancy path routing effect

𝑆
𝑆

𝑀
𝑥

L
in

k
s-

ID

S
la

ck

𝑀
𝑆

𝐷
𝐹

𝑇
𝑆

𝐷
𝐹

𝑓
𝑙𝑡

(𝑐
)

T
o

ta
l

 𝑁
𝑠𝑚

E
ff

ec
ti

v
e-

 𝑁
𝑠𝑚

R
ea

l-
 𝑁

𝑠𝑚

T
im

es
 (

se
co

n
d

s)

𝐹
𝐸

𝑎
𝑣

𝑔
,𝑑

𝑦
𝑛

𝑅
𝑒𝐹

𝐸
(𝑆

𝑆
𝑀

)

1 9 6 6 6 0 191 127 64 416 2.35 23,63

14 7 6 6 6 0 191 127 64 480 2,37 23,63

2 9 3 6 6 0 46 38 8 348 2.49 19,89

15 7 3 6 6 0 46 38 8 354 2.49 19,89

10 9 1 6 6 2 60 52 8 2558 2.59 16,66

13 7 1 6 6 2 60 52 8 2565 2.59 16,66

7 9 0 6 6 1 16 14 2 945 2.96 4,79

16 7 0 6 6 1 16 14 2 940 2.96 4,79

These results confirm our theory that the SBMeS method and MeS algorithm are able to

balance and perform trade-offs between fault-tolerance, reliability, and energy efficiency

in adaptive TT MPSoCs. In addition, compared to SS, DS can reduce power consumption

in MPSOCs and has better energy efficiency in robust and adaptive TTS when using 𝑆𝐷𝐹

for cores and routers.

7.4. Summary

This section presented five case studies in which developing models and techniques were

designed and evaluated. Each case study helped to evaluate the SBMeS technique, MeS,

and the MeSViz tools. These case studies have all been published in journals or included

in conferences papers, are currently under review, or are currently awaiting publication.

123

124

Chapter 8: Conclusion and further research

This chapter concludes the thesis and highlights problems and recommendations for

future research.

We have proposed a new energy-efficient SBMeS algorithm for an NoC-based MPSoC.

The domain of embedded systems based on MPSoCs and NoCs has many challenges due

to the emergence of new applications, such as drones, e-cars, and smart-cars. Scheduling

plays a vital role in real-time systems and 𝑻𝑻𝑺, through management and control of

different platform and hardware services in a perfectly timed system.

This dissertation introduced a SBMeS model for safety and mixed-critical systems of

MPSoCs and NoCs, based on adaptive TT that could support different scenarios for fault-

tolerance systems. The SBMeS model was designed first to work and support slacks and

for energy efficiency and was then extended to support core faults.

The formulation was based on MIQP and all scenarios were investigated using CIPLEX.

The summary of the results is as follows:

A) MeSViz can visualize meta-schedules in adaptive TT MPSoC and NoCs. The tool

provides a systematic means of realizing a meta-visualizer. It helps to easily validate

schedules to find problems in schedules (e.g., bugs, errors, overlaps, and collisions,

and their hierarchy).

B) In section 7.3.1, our DTS algorithm was seen to save 86% of memory for 512

schedules. This method is used for sections 7.3.2.6, 7.3.3.67.3.4.4)

C) In section 7.3.2, our algorithm minimizes the frequency of cores by maximizing the

𝑆𝐷𝐹 of tasks 𝑇𝑆𝐷𝐹 in different scenarios. Thereby, it reduces the dynamic power

consumption of the NoC framework. MeS can be used in scenario-based (fault, safety,

power-saving) scheduling and adaptivity TTS. MeSViz is used to evaluate MeS

results, and there is evidence of accuracy and performance for MeS algorithms. The

simulation results show that our DS algorithm, compared to the SS, produces, on

average, a maximum of 64.4% in a single schedule and 41.61% energy reduction for

NoCs.
D) In section 7.3.3, our algorithm minimizes the frequency of cores and routers by

maximizing the 𝑆𝐷𝐹 of execution times for each task and the 𝐷𝑀 for each message

in the whole path in different scenarios. As a result, it reduces the dynamic power

consumption of the NoC framework for both routers and cores. The novel SBMeS

technique is expandable and reduces the dynamic power consumption in the scenario-

based schedules. The simulation results show that our DS and 𝑆𝐷𝐹 method, compared

to the SS, produces an energy reduction of up to 59.57% for cores (𝑅𝑒𝐹𝐸𝑐) and

31.12% for routers (𝑅𝑒𝐹𝐸𝑅). The energy reduction is, on average of SSM, up to

32.92% in a single schedule and 25.69% for NoCs.

E) As seen in section 7.3.4, the novel optimization technique of our MeS tool is

independent of network design, is expandable, and can be used to reduce and optimize

dynamic power consumption in the schedules. MeS is used for our multi-scenario-

125

based (e.g., fault, safety, power-saving) scheduling on adaptive TTS. The results show

that our DS time consideration and frequency slowdown in MeS, compared to the SS

time, produces an energy reduction of up to 57% for cores (𝑅𝑒𝐹𝐸𝑐) and 52.46%

(𝑅𝑒𝐹𝐸𝑅) for routers. The energy reduction is, on average, up to 46.73% in a single

schedule and 33.88% for NoCs.

F) In section 7.3.5, compared to section 7.3.4, the SBMeS technique and MeS tool was

improved for network design and expandability, revealing no significant impact on

power consumption in the schedules when disabling redundancy links. MeS is used

in our multi-scenario-based (e.g., fault, safety, power-saving) scheduling and adaptive

TT systems problems. The results show that our DS and 𝑆𝐷𝐹 method and algorithm

based on MeS, compared to the SS, produce an energy reduction of up to 25.56%, on

average. The energy reduction in the worst-case is 0.6%.

126

Glossary

A

Adaptive, 1, 91

adaptive TT, 20, 40,

124

Adaptivity, 24

algorithm, 17, 19, 20,

22, 24, 27, 29, 30,

31, 33, 37, 63, 77,

103, 106, 107, 108,

124

Algorithm, 18, 64, 66

AM, 42, 43, 64, 69,

75, 85, 86, 88, 91,

92, 104, 105, 107

Application model,

43

automotive, 16

automotive functions,

7

C

CM, 42, 44, 69, 75,

85, 86, 91, 92

Collision, 49

communication, 9,

16, 17, 19, 20, 26,

30, 31, 35, 42, 106

complex integrated

systems, 16

computer science, 16,

18

Connectivity, 50

Constants, 48

Constraints, 48, 50

Context model, 44

Cores, 50

CPLEX, 18, 46, 48,

65, 73, 85

critical events, 33

D

debug, 16, 76

Decision Variables,

48, 51, 103, 106

dependability, 7, 27

DVFS, 15, 19, 28, 30,

31, 32, 37, 52

DVS, 37

E

Embedded Real-Time

Systems, 22

embedded systems,

16, 17, 20, 24, 32,

33, 37

energy consumption,

15, 17, 19, 20, 30,

31, 32, 52, 77, 103,

104, 105, 106, 108,

109

energy efficiency, 18,

19, 24, 106

energy saving, 33,

105, 108

energy-aware, 33

energy-efficiency, 7,

17, 20, 24, 30, 33,

104, 108

Energy-efficiency,

15, 17

energy-savings, 17,

18, 22, 108, 124

Evaluation, 96

event, 18, 19, 24, 42,

64, 65, 73, 75, 76,

85, 88, 89, 106

execution time, 17,

29, 30, 32, 42, 52,

88, 92, 94

F

fault events, 24

flexibility, 7

frequency scaling, 17,

24, 31

Functions, 68

G

Gannt mapping, 76

global optimum, 73,

85

Graph mapping, 75,

89

H

heuristics, 16, 36

Heuristics, 46

Hop, 52

I

IBM, 18, 35, 85

L

Linearizing, 54

M

mathematical

programming, 16

MeS, 16, 45, 48, 63,

64, 69, 72, 73, 75,

76, 85, 86, 91, 92,

93, 94, 95, 96, 103,

104, 105, 106, 107,

108, 124

MES, 9, 20

Message Deadlines,

51

Message Duration, 50

MeSViz, 7, 9, 18, 20,

45, 87, 91, 92, 95,

104, 105, 124

Meta-Scheduler, 9,

63, 68, 70, 71, 72

meta-schedules, 7, 20,

29, 89, 91

meta-scheduling, 7

Meta-Scheduling, 1

MIQP, 19, 35, 46, 65,

73, 91, 104

Mixed-Criticality, 23

Mixed-Integer

Quadratic

Programming, 19

mobile phones, 15

motivation, 5

Motivation, 16

MPSoC, 9, 25, 31

multi-core

architectures, 15,

17, 19, 24

multi-processor, 16

multi-scenario, 18, 63

N

neighborhood search,

16

Neighborhood

search, 46

NoC, 9, 17, 24, 25,

26, 29, 30, 31, 42,

50, 63, 77, 103,

108, 124

NoCs, 7, 16, 17, 20,

25, 26, 27, 30, 35,

42, 124

nodes, 18, 42, 75, 76,

86, 88, 91, 92, 93

NP-hard, 46

O

objective function,

19, 35, 46

optimization, 18, 19,

37, 85

Optimization, 35, 46

optimizer, 35, 46, 73

optimizing, 22, 28

Outputs, 88, 105, 108,

112, 117

P

Path, 50

Physical model, 42

platforms, 7, 124

PM, 42, 64, 69, 75,

85, 86, 88, 91, 92,

104, 105, 106, 107,

108

problem-solving, 46

Prof. Dr. Madjid

Fathi, 5

Prof. Dr. Raimund

Kirner, 2, 5

Professor Dr. Roman

Obermaisser, 5

Q

quadratic, 46

quasi-static, 17, 34,

36, 37, 63

quasi-static

scheduling, 34, 37,

63

R

real-time, 16, 22, 30,

40

Real-time Systems,

22

127

S

SAFEPOWER, 63

safety-critical, 15, 16,

17, 20, 24, 27

safety-critical

systems, 15, 17,

24, 27

safety-criticality, 24

SBMeS, 124

scenario-based, 16,

18, 30, 31, 34, 36,

37, 63, 73, 103,

124

Scenario-based, 91

scheduling, 7, 16, 17,

18, 19, 20, 22, 24,

28, 29, 30, 31, 32,

33, 34, 35, 37, 42,

46, 48, 63, 64, 65,

69, 73, 75, 85, 103,

106, 108, 124

Scheduling, 16, 19,

36, 45, 46, 106

slack, 17, 18, 19, 20,

28, 30, 31, 32, 37,

63, 64, 91, 92, 105,

106, 108

Slow Down Factors,

51, 103

SM, 42, 45, 52, 64,

65, 75, 85, 88, 91,

92, 104, 105, 106,

108

T

Task Procrastination,

31

Tasks, 27

time-triggered, 7, 9,

17, 19, 24, 35

Time-Triggered

Embedded

Systems, 24

tree-based graph, 7

TT, 9

TT systems, 18, 73,

124

V

visualization, 7, 18,

20, 40, 45, 69, 73,

76, 77, 89

Visualization, 40, 75,

76

visualizing, 7, 18, 20,

91

W

WCET, 9, 27, 28, 29,

42, 75, 88, 105,

107

X

XML, 69, 73, 85, 86

128

List of Figures

Figure 1. Conceptual difference [23] ... 22

Figure 2. Current and future trend in an embedded system [23] 22

Figure 3. Kalray’s MPPA network-on-chip (The 𝑀𝑃𝑃𝐴2® − 256 Bostan2 processor

[52]) .. 26

Figure 4. Simplified design flow and meta-scheduler (MeS) integration in SAFEPOWER

[3].. 27

Figure 5. A search tree for time slot [17] ... 33

Figure 6. Conceptual physical model (PM) .. 43

Figure 7. General physical model (PM) schema .. 43

Figure 8. General application model (AM) schema ... 44

Figure 9. General context model (CM) schema ... 45

Figure 10. Meta-scheduler (MeS) data structure schema model 46

Figure 11. The basic model of meta-scheduling (MeS) ... 47

Figure 12. Conceptual AM ... 51

Figure 13. Quadratization technique via hops .. 55

Figure 14.The effect of TSDF on tasks et(t) and core fault .. 56

Figure 15. Three-step scheduling for finding optimum solutions 57

Figure 16. a. Stack slack (SS) and b. Dynamic slack (DS) sample 59

Figure 17. Usage of dynamic slack (DS) to reduce makespan 60

Figure 18. Usage of 𝑆𝐷𝐹 regarding dynamic slack (DS) .. 61

Figure 19. Usage of scenario-based meta-scheduling (SBMeS) on system-level design for

SAFEPOWER multi-processor system-on-a-chip (MPSoC) [3] 64

Figure 20. Depth-first algorithm establishing schedule backwards with tabu-set for re-

convergence (FAESB-TSR) ... 66

Figure 21. Conceptual of the meta-scheduler (MeS) tool .. 67

Figure 22 . Scenario-based meta-scheduling (SBMeS) general model 70

Figure 23. States of 3 events and their effect of each 𝑆𝑀 .. 72

Figure 24. Events’ effects in task scheduling ... 72

Figure 25. Schedule Gantt map .. 76

Figure 26. Schedule tree include all data .. 76

Figure 27. Meta-visualization of an event .. 77

Figure 28. Events state in s schedule tree ... 79

Figure 29. Schedules share points regarding task changes and Figure 28 80

Figure 30. Decoding schedules from delta tree (DT) ... 82

Figure 31. Delta tree (DT) data model ... 82

Figure 32. Schema technique for standard data structure modelling 84

Figure 33. Overview of scheduling models .. 85

Figure 34. The simple architecture of meta-scheduling (MeS) 85

Figure 35. Standardized input XML sample .. 87

Figure 36. Example a textual data with three nodes ... 88

Figure 37. Static slack (SS) schedule model (SM) generated by meta-scheduling

visualization tool (MeSViz) .. 92

129

Figure 38. Schedule tree with 94 schedules (created via meta-scheduling visualization

tool (MeSViz) and GVEdit) ... 93

Figure 39. Gantt map of schedule ID 44 .. 94

Figure 40. Incorrect results and information found in the complex schedule 95

Figure 41. Meta-schedule Gantt map generated from meta-scheduling (MeS) class 95

Figure 42. Schedule 𝑆𝑀0 with static slack (SS)... 96

Figure 43. Schedule 𝑆𝑀1 with dynamic slack (DS).. 97

Figure 44. Comparing two schedules 𝑆𝑀0 (Figure 42) and 𝑆𝑀1 (Figure 43) after slack

 .. 97

Figure 45. Graph output of node dependency .. 98

Figure 46. Few changes from ID2 to ID3 ... 99

Figure 47. Minimum changes from 𝑆𝑀37 to 𝑆𝑀38 regarding T3 slack 99

Figure 48. Meta-visualization for Example 3 (schedules 𝑆𝑀3 & 𝑆𝑀4) 101

Figure 49. Comparison of three different scenarios for memory saving with delta

scheduling technique (DTS) ... 103

Figure 50. The physical model (PM) of case study .. 104

Figure 51. The application model (AM) of case study ... 104

Figure 52. The application model (AM) of the case study [6] 107

Figure 53. The physical model (PM) of the case study 7.3.2 108

Figure 54. Energy consumption results for cores and routers 𝐹𝐸𝐶𝑠𝑚 , 𝐹𝐸𝑅𝑠𝑚

, 𝐹𝐸𝐶, 𝑎𝑣𝑔, 𝑑𝑦𝑛 , 𝐹𝐸𝑅, 𝑎𝑣𝑔, 𝑑𝑦𝑛 .. 109

Figure 55. 𝐹𝐸𝑠𝑚 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑚𝑜𝑑𝑒𝑙𝑠(SMs) results and average 𝐹𝐸𝑎𝑣𝑔, 𝑑𝑦𝑛 109

Figure 56. Total energy reduction results for cores𝑅𝑒𝐹𝐸𝐶(𝑆𝑀) and routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀)

and average𝐹𝐸𝐶, 𝑎𝑣𝑔, 𝑑𝑦𝑛, 𝐹𝐸𝑅, 𝑎𝑣𝑔, 𝑑𝑦𝑛 .. 110

Figure 57.Total FE reduction results for schedules 𝑅𝑒𝐸𝑠𝑚 and average 𝑅𝑒𝐹𝐸 110

Figure 58. The application model (AM) of the case study ... 111

Figure 59. The physical model (PM) of the case study .. 112

Figure 60. F𝐸𝐶𝑠𝑚, 𝐹𝐸𝑅𝑠𝑚 results for cores and routers and average

𝐹𝐸𝐶, 𝑎𝑣𝑔, 𝑑𝑦𝑛, 𝐹𝐸𝑅, 𝑎𝑣𝑔, 𝑑𝑦𝑛 .. 113

Figure 61. 𝐹𝐸(𝑠𝑚) results and average 𝐹𝐸𝑎𝑣𝑔, 𝑑𝑦𝑛 .. 113

Figure 62. 𝐹𝐸 results for cores 𝑅𝑒𝐹𝐸𝐶(𝑆𝑀) and routers 𝑅𝑒𝐹𝐸𝑅(𝑆𝑀) compare to 𝑆𝑀0

and average 𝐹𝐸𝐶, 𝑎𝑣𝑔, 𝑑𝑦𝑛, 𝐹𝐸𝑅, 𝑎𝑣𝑔, 𝑑𝑦𝑛 .. 114

Figure 63. Total 𝑅𝑒𝐹𝐸(𝑠𝑚) in each schedule compare to 𝑆𝑀0 and average 𝐹𝐸𝑎𝑣𝑔, 𝑑𝑦𝑛

 .. 114

Figure 64. The physical model (PM) of the case study .. 115

Figure 65. The application model (AM) of case study ... 115

Figure 66. All nodes in a sample schedules tree .. 118

Figure 67. Real nodes in a sample schedules tree ... 119

Figure 68. Combination dynamic slack (DS) and core fault results in 𝑆𝑀101 which

generated by meta-scheduling visualization tool (MeSViz) ... 119

Figure 69. The total number of generated schedules 𝑁𝑠𝑚 for each scenario 120

Figure 70.Time of computation for scenarios .. 120

Figure 71. FE results for each scenario 𝑆𝑆𝑀𝑥 .. 121

130

Figure 72. Total 𝑅𝑒𝐹𝐸(𝑆𝑀𝑀) (percentage) results for each scenario of comparing

dynamic schedules with a static schedule 𝑆𝑀𝑥 .. 121

131

List of Tables

Table 1. An overview of related works compared to scenario-based meta-scheduling

(SBMeS) ... 39

Table 2. Overview of existing real-time visualizations tools [7] 40

Table 3. Overview of input table [90] .. 48

Table 4. Sample data calculated for Figure 14 ... 56

Table 5. Sample raw input data before forming in XML format 84

Table 6. Difference between the designed scenarios .. 91

Table 7. Results of dynamic slack (DS) schedules ... 100

Table 8. Memory consumption and saving via delta scheduling technique (DST) 100

Table 9. Sample results of Example 2 .. 101

Table 10. Results of delta scheduling technique (DST) memory saving for Example 2

 .. 101

Table 11. Sample results for Example 3 ... 102

Table 12. Results of delta scheduling technique (DST) memory saving for Example 3

 .. 102

Table 13. Meta-scheduling (MeS) input constant .. 104

Table 14. Results of delta scheduling technique (DST) memory saving 105

Table 15. Some collected results for model example ... 105

Table 16. Energy results for example ... 106

Table 17. Meta-scheduling (MeS) input constant devices [13] 107

Table 18. Energy results for Example 7.3.2 ... 108

Table 19. General results for a model example .. 108

Table 20. Results of delta scheduling technique (DST) memory saving 110

Table 21. Meta-scheduling (MeS) input constant .. 111

Table 22. General results of 𝐹𝐸 for the example model ... 112

Table 23. Results of delta scheduling technique (DST) memory saving 114

Table 24. The context model (CM) for application model (AM) and physical model (PM)

scenarios ... 116

Table 25. Meta-scheduling (MeS) input constant .. 117

Table 26. Output results.. 117

Table 27. Redundancy path routing effect .. 122

132

List of examples

7.3.1.1. Example 1. Sample scenario with four tasks and three messages 96

7.3.1.3. Example 2. Sample scenario with seven tasks and five messages and 𝑁𝑠𝑠𝑚 =

128 .. 100

7.3.1.4. Example 3. Big sample with 𝑁𝑡𝑠𝑘 = 9 , 𝑁𝑚𝑠𝑔 = 8 , and 𝑁𝑠𝑠𝑚 = 512 schedules

 .. 102

133

List of Algorithms

Algorithm 1. Main function algorithm ... 69

Algorithm 2. Fault recovery and scheduling technique .. 71

Algorithm 3. DTS discover and calculating changes for messages (a) and tasks (b) 81

Algorithm 4. XML parser ... 86

Algorithm 5. Slope Evaluation 1 .. 95

Algorithm 6. Slope Evaluation 2 .. 96

134

PUBLICATIONS AND PREVIOUS WORKS

R. Obermaisser. H. Ahmadian, A. Maleki, Y. Bebawy, A. Lenz, A, B. Sorkhpour “

Adaptive Time-Triggered Multi-Core Architecture,” Designs, vol. 3, no. 1, p. 7,

2019.

B. Sorkhpour, R. Obermaisser, and Y. Bebawy, Eds., Optimization of Frequency-Scaling

in Time-Triggered Multi-Core Architectures using Scenario-Based Meta-Scheduling: “in

Proceedings of AmE 2019-Automotive meets Electronics; 10th GMM-Symposium VDE,

2019.

B. Sorkhpour and R. Obermaisser, “MeSViz: Visualizing Scenario-based Meta-

Schedules for Adaptive Time-Triggered Systems,” in AmE 2018-Automotive meets

Electronics; 9th GMM-Symposium, 2018, pp. 1–6.

B. Sorkhpour, A. Murshed, and R. Obermaisser, “Meta-scheduling techniques for energy-

efficient robust and adaptive time-triggered systems,” in Knowledge-Based Engineering

and Innovation (KBEI), 2017 IEEE 4th International Conference on, 2017, pp. 143–150.

135

I. REFERENCES

[1] H. Kopetz, Real-time systems: design principles for distributed embedded

applications: Springer Science & Business Media, 2011.

[2] J. Theis, G. Fohler, and S. Baruah, “Schedule table generation for time-triggered

mixed criticality systems,” Proc. WMC, RTSS, pp. 79–84, 2013.

[3] Safepower, D3.8 User guide of the heterogeneous MPSoC design. [Online]

Available: http://safepower-project.eu/wp-content/uploads/2019/01/D3.8-

User_guide_of_the_heterogeneous_MPSoC_design_v1-0_final.pdf.

[4] DW BUSINESS, BMW increases R&D spending on e-cars, autonomous vehicles.

[5] S. R. Sakhare and M. S. Ali, “Genetic algorithm based adaptive scheduling algorithm

for real time operating systems,” International Journal of Embedded Systems and

Applications (IJESA), vol. 2, no. 3, pp. 91–97, 2012.

[6] R. Obermaisser, Ed., Time-triggered communication. Boca Raton, FL: CRC Press,

2012.

[7] P. Munk, “Visualization of scheduling in real-time embedded systems,” University

of Stuttgart, Institute of Software Technology, Department of Programming

Languages and Compilers, 20103.

[8] S. Hunold, R. Hoffmann, and F. Suter, “Jedule: A Tool for Visualizing Schedules of

Parallel Applications,” in 2010 International Conference on Parallel Processing

Workshops (ICPPW), San Diego, CA, USA, pp. 169–178.

[9] H. Wang, L.-S. Peh, and S. Malik, “Power-driven design of router microarchitectures

in on-chip networks,” in 36th International symposium on microarchitecture, San

Diego, CA, USA, 2003, pp. 105–116.

[10] B. Sorkhpour and R. Obermaisser, “MeSViz: Visualizing Scenario-based Meta-

Schedules for Adaptive Time-Triggered Systems,” in AmE 2018-Automotive meets

Electronics; 9th GMM-Symposium, 2018, pp. 1–6.

[11] A. C. Persya and T. R. G. Nair, “Model based design of super schedulers managing

catastrophic scenario in hard real time systems,” in 2013 International Conference

on Information Communication and Embedded Systems (ICICES), Chennai, 2013,

pp. 1149–1155.

[12] B. Sorkhpour, O. Roman, and Y. Bebawy, Eds., Optimization of Frequency-Scaling

in Time-Triggered Multi-Core Architectures using Scenario-Based Meta-

Scheduling: VDE, 2019.

[13] B. Sorkhpour, A. Murshed, and R. Obermaisser, “Meta-scheduling techniques for

energy-efficient robust and adaptive time-triggered systems,” in Knowledge-Based

136

Engineering and Innovation (KBEI), 2017 IEEE 4th International Conference on,

2017, pp. 143–150.

[14] J. Huang, C. Buckl, A. Raabe, and A. Knoll, “Energy-Aware Task Allocation for

Network-on-Chip Based Heterogeneous Multiprocessor Systems,” in 2011 19th

International Euromicro Conference on Parallel, Distributed and Network-Based

Processing, Ayia Napa, Cyprus, 2011, pp. 447–454.

[15] S. Prabhu, B. Grot, P. Gratz, and J. Hu, “Ocin tsim-DVFS aware simulator for

NoCs,” Proc. SAW, vol. 1, 2010.

[16] Roman Obermaisser et al., “Adaptive Time-Triggered Multi-Core Architecture,”

Designs, vol. 3, no. 1, p. 7, 2019.

[17] H. Kopetz, Ed., Real-Time Systems: Design Principles for Distributed Embedded

Applications (Real-Time Systems Series) // Real-time systems: Design principles for

distributed embedded applications, 2nd ed. New York: Springer, 2011.

[18] F. Guan, L. Peng, L. Perneel, H. Fayyad-Kazan, and M. Timmerman, “A Design

That Incorporates Adaptive Reservation into Mixed-Criticality Systems,” Scientific

Programming, vol. 2017, 2017.

[19] Y. Lin, Y.-l. Zhou, S.-t. Fan, and Y.-m. Jia, “Analysis on Time Triggered Flexible

Scheduling with Safety-Critical System,” in Chinese Intelligent Systems Conference,

2017, pp. 495–504.

[20] IEEE, “TTP - A Time-Triggered Protocol For Fault-tolerant Real-time System -

Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers., The Twenty-Third

International Symposi,”

[21] J. Cortadella, A. Kondratyev, L. Lavagno, C. Passerone, and Y. Watanabe, “Quasi-

static scheduling of independent tasks for reactive systems,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 24, no. 10, pp. 1492–1514, 2005.

[22] R. Rajaei, S. Hessabi, and B. V. Vahdat, “An energy-aware methodology for

mapping and scheduling of concurrent applications in MPSOC architectures,” in

Electrical Engineering (ICEE), 2011 19th Iranian Conference on, 2011, pp. 1–6.

[23] A. Menna, “Allocation, Assignment and Scheduling for Multi-processor System on

Chip,” PhD, Universit ´e des Sciences et Technologies de Lille, 2006.

[24] A. Murshed, “Scheduling Event-Triggered and Time-Triggered Applications with

Optimal Reliability and Predictability on Networked Multi-Core Chips,”

[25] A. Maleki, H. Ahmadian, and R. Obermaisser, “Fault-Tolerant and Energy-Efficient

Communication in Mixed-Criticality Networks-on-Chips,” in 2018 IEEE Nordic

Circuits and Systems Conference (NORCAS): NORCHIP and International

Symposium of System-on-Chip (SoC), 2018, pp. 1–7.

137

[26] P. Eitschberger, S. Holmbacka, and J. Keller, “Trade-Off Between Performance,

Fault Tolerance and Energy Consumption in Duplication-Based Taskgraph

Scheduling,” in Architecture of Computing Systems – ARCS 2018.

[27] R. Lent, “Grid Scheduling with Makespan and Energy-Based Goals,” Journal of

Grid Computing, vol. 13, no. 4, pp. 527–546, 2015.

[28] P. Eitschberger, “Energy-efficient and Fault-tolerant Scheduling for Manycores and

Grids,” Fakultät für Mathematik und Informatik, FernUniversität in Hagen, Hagen,

2017.

[29] A. Murshed, “Scheduling event-triggered and time-triggered applications with

optimal reliability and predictability on networked multi-core chips,” Dissertation,

Embedded Systems, Universität Siegen, Siegen, 2018.

[30] E. Dubrova, Fault-Tolerant Design. New York, NY: Springer; Imprint, 2013.

[31] A. Avizienis, J.-C. Laprie, B. Randell, and others, Fundamental concepts of

dependability: University of Newcastle upon Tyne, Computing Science, 2001.

[32] I. Bate, A. Burns, and R. I. Davis, “A Bailout Protocol for Mixed Criticality

Systems,” in 2015 27th Euromicro Conference on Real-Time Systems: ECRTS 2015

: proceedings, Lund, Sweden, 2015, pp. 259–268.

[33] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department of

Computer Science, University of York, Tech. Rep, pp. 1–69, 2013.

[34] B. Hu et al., “FFOB: efficient online mode-switch procrastination in mixed-

criticality systems,” Real-Time Syst, vol. 79, no. 1, p. 39, 2018.

[35] H. Isakovic and R. Grosu, “A Mixed-Criticality Integration in Cyber-Physical

Systems: A Heterogeneous Time-Triggered Architecture on a Hybrid SoC

Platform,” in Computer Systems and Software Engineering: Concepts,

Methodologies, Tools, and Applications: IGI Global, 2018, pp. 1153–1178.

[36] B. Sorkhpour and R. Obermaisser, “MeSViz: Visualizing Scenario-based Meta-

Schedules for Adaptive Time-Triggered Systems,” in AmE 2018-Automotive meets

Electronics; 9th GMM-Symposium, 2018, pp. 1–6.

[37] B. Hu, “Schedulability Analysis of General Task Model and Demand Aware

Scheduling in Mixed-Criticality Systems,” Technische Universität München.

[38] H. Ahmadian, F. Nekouei, and R. Obermaisser, “Fault recovery and adaptation in

time-triggered Networks-on-Chips for mixed-criticality systems,” in 12th

International Symposium on Reconfigurable Communication-centric Systems-on-

Chip, (ReCoSoC 2017): July 12-14, 2017, Madrid, Spain : proceedings, Madrid,

Spain, 2017, pp. 1–8.

138

[39] R. Trüb, G. Giannopoulou, A. Tretter, and L. Thiele, “Implementation of partitioned

mixed-criticality scheduling on a multi-core platform,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 122, 2017.

[40] C. Schöler, “Novel scheduling strategies for future NoC and MPSoC architectures,”

2017.

[41] M. I. Huse, “FlexRay Analysis, Configuration Parameter Estimation, and

Adversaries,” NTNU.

[42] W. Steiner, “Synthesis of Static Communication Schedules for Mixed-Criticality

Systems,” in 2011 14th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed Computing workshops

(ISORCW): 28-31 March 2011, Newport Beach, California, USA ; proceedings,

Newport Beach, CA, USA, 2011, pp. 11–18.

[43] G. Marchetto, S. Tahir, and M. Grosso, “A blocking probability study for the

aethereal network-on-chip,” in Proceedings of 2016 11th International Design &

Test Symposium (IDT): December 18-20-2016, Hammamet, Tunisia, Hammamet,

Tunisia, 2016, pp. 104–109.

[44] M. Ruff, “Evolution of local interconnect network (LIN) solutions,” in VTC2003-

Fall Orlando: 2003 IEEE 58th Vehicular Technology Conference : proceedings : 6-

9 October, 2003, Orlando, Florida, USA, Orlando, FL, USA, 2004, 3382-3389

Vol.5.

[45] R. B. Atitallah, S. Niar, A. Greiner, S. Meftali, and J. L. Dekeyser, “Estimating

Energy Consumption for an MPSoC Architectural Exploration,” in Lecture Notes in

Computer Science, Architecture of Computing Systems - ARCS 2006, W. Grass, B.

Sick, and K. Waldschmidt, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,

2006, pp. 298–310.

[46] U. U. Tariq, H. Wu, and S. Abd Ishak, “Energy-Aware Scheduling of Conditional

Task Graphs on NoC-Based MPSoCs,” in Proceedings of the 51st Hawaii

International Conference on System Sciences, 2018.

[47] Compiler-Directed Frequency and Voltage Scaling for a Multiple Clock Domain:

ACM Press.

[48] A. B. Mehta, “Clock Domain Crossing (CDC) Verification,” in ASIC/SoC

Functional Design Verification.

[49] Mecanismo de controle de QoS através de DFS em MPSOCS: Pontifícia

Universidade Católica do Rio Grande do Sul; Porto Alegre, 2014.

[50] Marc Boyer, Benoît Dupont de Dinechin, Amaury Graillat, and Lionel Havet,

“Computing Routes and Delay Bounds for the Network-on-Chip of the Kalray

MPPA2 Processor,”

139

[51] B. D. de Dinechin and A. Graillat, “Feed-Forward Routing for the Wormhole

Switching Network-on-Chip of the Kalray MPPA2 Processor,” in Proceedings of the

10th International Workshop on Network on Chip Architectures - NoCArc'17,

Cambridge, MA, USA, 2017, pp. 1–6.

[52] KALRAY Corporation, Kalray’s MPPA network-on-chip. [Online] Available:

http://www.kalrayinc.com/portfolio/processors/.

[53] I. Lee, J. Y. T. Leung, and S. H. Son, Handbook of real-time and embedded systems:

CRC Press, 2007.

[54] Wikipedia, XtratuM - Wikipedia. [Online] Available:

https://en.wikipedia.org/w/index.php?oldid=877711274. Accessed on: Feb. 11 2019.

[55] I. Ripoll et al., “Configuration and Scheduling tools for TSP systems based on

XtratuM,” Data Systems In Aerospace (DASIA 2010), 2010.

[56] V. Brocal et al., “Xoncrete: a scheduling tool for partitioned real-time systems,”

Embedded Real-Time Software and Systems, 2010.

[57] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with procrastination

scheduling in real-time embedded systems,” in Proceedings of the 42nd annual

Design Automation Conference, 2005, pp. 111–116.

[58] H. Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy, “Deterministic clock

gating for microprocessor power reduction,” in The 9th international symposium on

high-performance computer architecture, Anaheim, CA, USA, 2003, pp. 113–122.

[59] H. Matsutani, M. Koibuchi, H. Nakamura, and H. Amano, “Run-Time Power-Gating

Techniques for Low-Power On-Chip Networks,” in Low Power Networks-on-Chip.

[60] P. W. Cook et al., “Power-aware microarchitecture: design and modeling challenges

for next-generation microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–44, 2000.

[61] W. Kim, J. Kim, and S. L. Min, “Dynamic voltage scaling algorithm for dynamic-

priority hard real-time systems using slack time analysis,” in Design, Automation

and Test in Europe Conference and Exhibition, 2002. Proceedings, 2002, pp. 788–

794.

[62] D. M. Brooks et al., “Power-aware microarchitecture: Design and modeling

challenges for next-generation microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–

44, 2000.

[63] S. Prabhu, Ocin_tsim - A DVFS Aware Simulator for NoC Design Space Exploration

and Optimization. [College Station, Tex.]: [Texas A & M University], 2010.

[64] A. Bianco, P. Giaccone, and N. Li, “Exploiting Dynamic Voltage and Frequency

Scaling in networks on chip,” in IEEE 13th International Conference on High

140

Performance Switching and Routing (HPSR), 2012, Belgrade, Serbia, 2012, pp. 229–

234.

[65] M. Caria, F. Carpio, A. Jukan, and M. Hoffmann, “Migration to energy efficient

routers: Where to start?,” in IEEE International Conference on Communications

(ICC), 2014: 10-14 June 2014, Sydney, Australia, Sydney, NSW, 2014, pp. 4300–

4306.

[66] D. M. Brooks et al., “Power-aware microarchitecture: Design and modeling

challenges for next-generation microprocessors,” IEEE Micro, vol. 20, no. 6, pp. 26–

44, 2000.

[67] S. Chai, Y. Li, J. Wang, and C. Wu, “An energy-efficient scheduling algorithm for

computation-intensive tasks on NoC-based MPSoCs,” Journal of Computational

Information Systems, vol. 9, no. 5, pp. 1817–1826, 2013.

[68] P. K. Sharma, S. Biswas, and P. Mitra, “Energy efficient heuristic application

mapping for 2-D mesh-based network-on-chip,” Microprocessors and

Microsystems, vol. 64, pp. 88–100, 2019.

[69] H. M. Kamali, K. Z. Azar, and S. Hessabi, “DuCNoC: A High-Throughput FPGA-

Based NoC Simulator Using Dual-Clock Lightweight Router Micro-Architecture,”

IEEE Trans. Comput., vol. 67, no. 2, pp. 208–221, 2018.

[70] H. Farrokhbakht, H. M. Kamali, and S. Hessabi, “SMART,” in Proceedings of the

Eleventh IEEE/ACM International Symposium on Networks-on-Chip - NOCS '17,

Seoul, Republic of Korea, 2017, pp. 1–8.

[71] W. Hu, X. Tang, B. Xie, T. Chen, and D. Wang, “An Efficient Power-Aware

Optimization for Task Scheduling on NoC-based Many-core System,” in 2010 10th

IEEE International Conference on Computer and Information Technology,

Bradford, United Kingdom, 2010, pp. 171–178.

[72] H. F. Sheikh and I. Ahmad, “Simultaneous optimization of performance, energy and

temperature for DAG scheduling in multi-core processors,” in Green Computing

Conference (IGCC), 2012 International, 2012, pp. 1–6.

[73] J. Hu and R. Marculescu, “Energy-aware communication and task scheduling for

network-on-chip architectures under real-time constraints,” in Design, Automation

and Test in Europe Conference and Exhibition, 2004. Proceedings, 2004, pp. 234–

239.

[74] H. Bokhari, H. Javaid, M. Shafique, J. Henkel, and S. Parameswaran, “darkNoC,” in

Proceedings of the 51st Annual Design Automation Conference, San Francisco, CA,

USA, 2014, pp. 1–6.

141

[75] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic and aggressive

scheduling techniques for power-aware real-time systems,” in 22nd IEEE real-time

systems symposium: (RTSS 2001), London, UK, 2001, pp. 95–105.

[76] R. Jejurikar and R. Gupta, “Dynamic slack reclamation with procrastination

scheduling in real-time embedded systems,” in DAC 42, San Diego, California, USA,

2005, p. 111.

[77] G. Ma, L. Gu, and N. Li, “Scenario-Based Proactive Robust Optimization for

Critical-Chain Project Scheduling,” J. Constr. Eng. Manage., vol. 141, no. 10, p.

4015030, 2015.

[78] H. K. Mondal and S. Deb, “Power-and performance-aware on-chip interconnection

architectures for many-core systems,” IIIT-Delhi.

[79] J. Wang et al., “Designing Voltage-Frequency Island Aware Power-Efficient NoC

through Slack Optimization,” in International Conference on Information Science

and Applications (ICISA), 2014: 6-9 May 2014, Seoul, South Korea, Seoul, South

Korea, 2014, pp. 1–4.

[80] K. Han, J.-J. Lee, J. Lee, W. Lee, and M. Pedram, “TEI-NoC: Optimizing Ultralow

Power NoCs Exploiting the Temperature Effect Inversion,” IEEE Trans. Comput.-

Aided Des. Integr. Circuits Syst., vol. 37, no. 2, pp. 458–471, 2018.

[81] D. Li and J. Wu, “Energy-efficient contention-aware application mapping and

scheduling on NoC-based MPSoCs,” Journal of Parallel and Distributed

Computing, vol. 96, pp. 1–11, 2016.

[82] W. Y. Lee, Y. W. Ko, H. Lee, and H. Kim, “Energy-efficient scheduling of a real-

time task on dvfs-enabled multi-cores,” in Proceedings of the 2009 International

Conference on Hybrid Information Technology, 2009, pp. 273–277.

[83] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling for Hard-Real-Time

systems,” Real-Time Syst, vol. 1, no. 1, pp. 27–60, 1989.

[84] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server algorithm for

enhanced aperiodic responsiveness in hard real-time environments,” IEEE Trans.

Comput., vol. 44, no. 1, pp. 73–91, 1995.

[85] N. Chatterjee, S. Paul, and S. Chattopadhyay, “Task mapping and scheduling for

network-on-chip based multi-core platform with transient faults,” Journal of Systems

Architecture, vol. 83, pp. 34–56, 2018.

[86] R. N. Mahapatra and W. Zhao, “An energy-efficient slack distribution technique for

multimode distributed real-time embedded systems,” IEEE Trans. Parallel Distrib.

Syst., vol. 16, no. 7, pp. 650–662, 2005.

142

[87] G. Avni, S. Guha, and G. Rodriguez-Navas, “Synthesizing time-triggered schedules

for switched networks with faulty links,” in Proceedings of the 13th International

Conference on Embedded Software, Pittsburgh, Pennsylvania, 2016, pp. 1–10.

[88] F. Benhamou, Principle and Practice of Constraint Programming - CP 2006: 12th

International Conference, CP 2006, Nantes, France, September 25-29, 2006,

Proceedings. Berlin Heidelberg: Springer-Verlag, 2006.

[89] Satisfiability Modulo Graph Theory for Task Mapping and Scheduling on

Multiprocessor Systems, 2011.

[90] A. Murshed, R. Obermaisser, H. Ahmadian, and A. Khalifeh, “Scheduling and

allocation of time-triggered and event-triggered services for multi-core processors

with networks-on-a-chip,” pp. 1424–1431.

[91] F. Wang, C. Nicopoulos, X. Wu, Y. Xie, and N. Vijaykrishnan, “Variation-aware

task allocation and scheduling for MPSoC,” in IEEE/ACM International Conference

on Computer-Aided Design, 2007, San Jose, CA, USA, 2007, pp. 598–603.

[92] D. Mirzoyan, B. Akesson, and K. Goossens, “Process-variation-aware mapping of

best-effort and real-time streaming applications to MPSoCs,” ACM Trans. Embed.

Comput. Syst., vol. 13, no. 2s, pp. 1–24, 2014.

[93] C. MacLean and G. COWIE, Data flow graph: Google Patents.

[94] S. K. Baruah, A. Burns, and R. I. Davis, “Response-Time Analysis for Mixed

Criticality Systems,” in IEEE 32nd Real-Time Systems Symposium (RTSS), 2011,

Vienna, Austria, 2011, pp. 34–43.

[95] A. Burns and S. Baruah, “Timing Faults and Mixed Criticality Systems,” in Lecture

notes in computer science, 0302-9743, 6875. Festschrift, Dependable and historic

computing: Essays dedicated to Brian Randell on the occasion of his 75th birthday

/ Cliff B. Jones, John L. Lloyd (eds.), B. Randell, C. B. Jones, and J. L. Lloyd, Eds.,

Heidelberg: Springer, 2011, pp. 147–166.

[96] P. Ekberg and W. Yi, “Outstanding Paper Award: Bounding and Shaping the

Demand of Mixed-Criticality Sporadic Tasks,” in Proceedings of The 24th

Euromicro Conference on Real-Time Systems: 10-13 July 2012, Pisa, Italy, Pisa,

Italy, 2012, pp. 135–144.

[97] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some simplified NP-complete

problems,” in Proceedings of the sixth annual ACM symposium on Theory of

computing - STOC '74, Seattle, Washington, United States, 1974, pp. 47–63.

[98] L. Su et al., “Synthesizing Fault-Tolerant Schedule for Time-Triggered Network

Without Hot Backup,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1345–1355,

2019.

143

[99] A. Carvalho Junior, M. Bruschi, C. Santana, and J. Santana, “Green Cloud Meta-

Scheduling : A Flexible and Automatic Approach,” (eng), Journal of Grid

Computing : From Grids to Cloud Federations, vol. 14, no. 1, pp. 109–126,

http://dx.doi.org/10.1007/s10723-015-9333-z, 2016.

[100] T. Tiendrebeogo, “Prospect of Reduction of the GreenHouse Gas Emission by

ICT in Africa,” in e-Infrastructure and e-Services.

[101] Deutsche Welle (www.dw.com), Carmaker BMW to invest heavily in battery cell

center | DW | 24.11.2017. [Online] Available: https://p.dw.com/p/2oD3x. Accessed

on: Dec. 03 2018.

[102] G. Fohler, “Changing operational modes in the context of pre run-time

scheduling,” IEICE transactions on information and systems, vol. 76, no. 11, pp.

1333–1340, 1993.

[103] H. Jung, H. Oh, and S. Ha, “Multiprocessor scheduling of a multi-mode dataflow

graph considering mode transition delay,” ACM Transactions on Design Automation

of Electronic Systems (TODAES), vol. 22, no. 2, p. 37, 2017.

[104] A. Das, A. Kumar, and B. Veeravalli, “Energy-Aware Communication and

Remapping of Tasks for Reliable Multimedia Multiprocessor Systems,” in IEEE

18th International Conference on Parallel and Distributed Systems (ICPADS), 2012,

Singapore, Singapore, 2012, pp. 564–571.

[105] S. A. Ishak, H. Wu, and U. U. Tariq, “Energy-Aware Task Scheduling on

Heterogeneous NoC-Based MPSoCs,” in IEEE 35th IEEE International Conference

on Computer Design: ICCD 2017 : 5-8 November 2017 Boston, MA, USA :

proceedings, Boston, MA, 2017, pp. 165–168.

[106] C. A. Floudas and V. Visweswaran, “Quadratic Optimization,” in Nonconvex

Optimization and Its Applications, vol. 2, Handbook of Global Optimization, R.

Horst and P. M. Pardalos, Eds., Boston, MA, s.l.: Springer US, 1995, pp. 217–269.

[107] R. Lazimy, “Mixed-integer quadratic programming,” Mathematical

Programming, vol. 22, no. 1, pp. 332–349, 1982.

[108] A. Majd, G. Sahebi, M. Daneshtalab, and E. Troubitsyna, “Optimizing scheduling

for heterogeneous computing systems using combinatorial meta-heuristic solution,”

in 2017 IEEE SmartWorld: Ubiquitous Intelligence & Computing, Advanced &

Trusted Computed, Scalable Computing & Communications, Cloud & Big Data

Computing, Internet of People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) : 2017 conference

proceedings : San Francisco Bay Area, California, USA, August 4-8, 2017, San

Francisco, CA, 2017, pp. 1–8.

144

[109] B. Xing and W.-J. Gao, “Imperialist Competitive Algorithm,” in Intelligent

Systems Reference Library, Innovative computational intelligence: A rough guide to

134 clever algorithms, B. Xing and W.-J. Gao, Eds., New York NY: Springer Berlin

Heidelberg, 2013, pp. 203–209.

[110] J. D. Foster, A. M. Berry, N. Boland, and H. Waterer, “Comparison of Mixed-

Integer Programming and Genetic Algorithm Methods for Distributed Generation

Planning,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 833–843, 2014.

[111] J. Yin, P. Zhou, A. Holey, S. S. Sapatnekar, and A. Zhai, “Energy-efficient non-

minimal path on-chip interconnection network for heterogeneous systems,” in

ISPLED'12: Proceedings of the international symposium on low power electronics

and design, Redondo Beach, California, USA, 2012, p. 57.

[112] J. Falk et al., “Quasi-static scheduling of data flow graphs in the presence of

limited channel capacities,” in The 13th IEEE Symposium on Embedded Systems for

Real-time Multimedia: October 8-9, 2015, Amsterdam, Netherlands, Amsterdam,

Netherlands, 2015, pp. 1–10.

[113] T. Wei, P. Mishra, K. Wu, and J. Zhou, “Quasi-static fault-tolerant scheduling

schemes for energy-efficient hard real-time systems,” Journal of Systems and

Software, vol. 85, no. 6, pp. 1386–1399, 2012.

[114] M. J. Ryan, “A Case Study on the Impact of Convergence on Physical

Architectures—The Tactical Communications System,”

[115] Y. Huang and D. P. Palomar, “Randomized Algorithms for Optimal Solutions of

Double-Sided QCQP With Applications in Signal Processing,” IEEE Trans. Signal

Process., vol. 62, no. 5, pp. 1093–1108, 2014.

[116] X. Cai, W. Hu, T. Ma, and R. Ma, “A hybrid scheduling algorithm for

reconfigurable processor architecture,” in Proceedings of the 13th IEEE Conference

on Industrial Electronics and Applications (ICIEA 2018): 31 May-2 June 2018

Wuhan, China, Wuhan, 2018, pp. 745–749.

[117] P.-A. Hsiung and J.-S. Shen, Dynamic reconfigurable network-on-chip design:

Innovations for computational processing and communication. Hershey, Pa.: IGI

Global, 2010.

[118] R. Misener and C. A. Floudas, “Global optimization of mixed-integer

quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear

and edge-concave relaxations,” Mathematical Programming, vol. 136, no. 1, pp.

155–182, 2012.

[119] D. Axehill, “Applications of integer quadratic programming in control and

communication,” Institutionen för systemteknik, 2005.

145

[120] A. Nemirovskii, “Several NP-hard problems arising in robust stability analysis,”

Math. Control Signal Systems, vol. 6, no. 2, pp. 99–105, 1993.

[121] A. Sarwar, “Cmos power consumption and cpd calculation,” Proceeding: Design

Considerations for Logic Products, 1997.

[122] S. Kaxiras and M. Martonosi, “Computer Architecture Techniques for Power-

Efficiency,” Synthesis Lectures on Computer Architecture, vol. 3, no. 1, pp. 1–207,

2008.

[123] D. Kouzoupis, G. Frison, A. Zanelli, and M. Diehl, “Recent Advances in

Quadratic Programming Algorithms for Nonlinear Model Predictive Control,”

Vietnam Journal of Mathematics, vol. 46, no. 4, pp. 863–882, 2018.

[124] R. Fourer, “Strategies for “Not Linear” Optimization,” Houston, TX, Mar. 6 2014.

[125] L. A. Cortes, P. Eles, and Z. Peng, “Quasi-Static Scheduling for Multiprocessor

Real-Time Systems with Hard and Soft Tasks,” in 11th IEEE International

Conference on Embedded and Real-Time Computing Systems and Applications: 17-

19 August 2005, Hong Kong, China : proceedings, Hong Kong, China, 2005, pp.

422–428.

[126] L. Benini, “Platform and MPSoC Design,”

[127] R. Obermaisser and P. Peti, “A Fault Hypothesis for Integrated Architectures,” in

Proceedings of the Fourth Workshop on Intelligent Solutions in Embedded Systems:

Vienna University of Technology, Vienna, Austria, 2006 June 30, Vienna, Austria,

2005, pp. 1–18.

[128] R. Obermaisser et al., “Adaptive Time-Triggered Multi-Core Architecture,”

Designs, vol. 3, no. 1, p. 7, https://www.mdpi.com/2411-9660/3/1/7/pdf, 2019.

[129] IBM, IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual: IBM,

1987-2016.

[130] Chart Component and Control Library for .NET (C#/VB), Java, C++, ASP, COM,

PHP, Perl, Python, Ruby, ColdFusion. [Online] Available:

https://www.advsofteng.com/product.html. Accessed on: Jan. 10 2019.

[131] J. Ellson, E. Gansner, L. Koutsofios, S. C. North, and G. Woodhull, “Graphviz—

open source graph drawing tools,” in International Symposium on Graph Drawing,

2001, pp. 483–484.

[132] T. Lei and S. Kumar, “Algorithms and tools for network on chip based system

design,” in Chip in sampa, Sao Paulo, Brazil, 2003, pp. 163–168.

[133] G. D. Micheli and L. Benini, “Powering networks on chips: energy-efficient and

reliable interconnect design for SoCs,” in isss, 2001, pp. 33–38.

