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Abstract—Meta-scheduling algorithms are used for adaptation
in time-triggered systems as they adapt to different scenarios
such as failures or different environmental conditions. Most meta-
scheduling algorithms demand a considerable amount of storage
space from the host cyber-physical system due to the state-space
explosion problem in covering a reasonable number of scenarios.
This work deploys the Graph Neural Network (GNN) to learn the
multi-schedules from the meta-scheduling algorithm required for
adaptation. The GNN is used to learn the scheduling mechanism
of a Genetic Algorithm (GA) so that at runtime, adaptation is
achieved using the GNN model. We further investigate the impact
of modifiable tasks during a meta-scheduling operation on the
overall makespan. Finally, a comparison of the makespans is
made between a List Scheduler (LS), GA and the proposed GNN-
based technique to evaluate the impact of our approach. Our
proposed GNN-based approach outperforms the LS scheduler
as the number of modifiable tasks increases. The results show
that the proposed GNN-based meta-scheduling can be suitable
for real-time scenario adaptation in cyber-physical systems.

Keywords—Meta-scheduling, Adaptive Scheduling, Real-Time
systems, Adaptive-time triggered systems, Graph Neural Net-
works.

I. INTRODUCTION

The context of meta-scheduling in distributed system ar-
chitecture is a technique used to compute multiple schedules,
each of which is mapped to a specific scenario. The scenarios
can include slacks, failure, and different operating modes,
collectively referred to in this work as context events. The
meta-scheduler is equipped with the ability to switch schedules
upon the occurrence of context events. Moreover, the schedule
change is pre-computed offline while considering these context
events. The concept of meta-scheduling often appears in
literatures as quasi-static scheduling [1], or as super schedulers
[2].

Meta-scheduling is of particular importance for safety-
criticality systems where adaptation services are required.
These services aim to increase system dependability attributes
such as reliability and availability. Although static scheduling
techniques are predictable, they are limited to specifications
of dataflow without choice [3]. In contrast, meta-schedulers
extend static schedulers with data-dependent choices at run-
time.
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An overall architecture known as the Adaptive Time-
triggered Multicore Architecture (ATMA) for safety-critical
Cber-Physical Systems (CPS) is presented in [4]. ATMA sup-
ports adaptation using Multi-Scheduled Graphs (MSG) while
preserving the main properties of time-triggered systems.
The key properties include implicit synchronization, temporal
predictability and avoidance of resource conflict. Our work
is motivated by the need to provide efficient handling of the
large numbers of schedules generated by the meta-scheduler
algorithm in [4].

Sorkhpour [5] designed a scenario-based meta-scheduling
tool for an Adaptive Time-Triggered Multi-core Architecture
which incorporated context events such as core failures and
slack events. The design used Mixed-Integer Quadratic Pro-
gramming (MIQP) to solve scheduling problems at design
time. The resulting outcome was the MSG, which is utilized
at run-time. There was no proposed algorithm to handle the
volume of data resulting from the MSG size, which poses an
increasing storage demand for CPS. Muoka et al. [6] proposed
an algorithm based on path reconvergence and reconvergence
horizon to handle the state-space explosion problem resulting
from an increase in the number of scenarios required for
adaptation. Nevertheless, the technique only controls the size
of the MSG to be deployed, which is a trade-off as the
target number of context events is limited within a pre-defined
horizon.

To the best of our knowledge, no work exploits a machine
learning-based approach to handle the MSG size. Particularly,
Graph Neural Networks (GNN) so far not been exploited for
meta-scheduling, even though they have proven helpful in
solving graph representable applications [7]. The use of GNN
for learning the MSG is explored in this work.

GNNs are neural network models used for learning graph
representations [8]. GNN’s strength is attributed to its capa-
bility to capture node relationships through their features and
locations in the graph.

Although this work proposes the GNN for learning the
MSQG, it also addresses concerns regarding guaranteeing cor-
rect temporal and spatial allocation of tasks in safety-critical
applications. It addresses such concerns by only using the
GNN to predict tasks’ temporal priority, which will then be
used to perform online schedule reconstruction.

Furthermore, we study the impact of modifiable tasks
during the meta-scheduler operation for the proposed GNN



approaches, and the existing approaches, such as List Schedul-
ing (LS), and Genetic Algorithm (GA). The reason for the
investigation is due to the insight gotten after visualizing the
schedules in previous works [5], [6], which show a consid-
erable schedule change within a meta-scheduler when more
tasks can be rescheduled. For this reason, we study the offline
consideration of modifiable tasks for different schedulers; List
scheduling, Genetic Algorithm, and our proposed GNN-based
scheduler.

The remainder of this work is structured as follows: Sec-
tion II discusses the related works. Section III provides a
background of the meta-scheduler and explains the proposed
model. An experimental setup to evaluate our work is pre-
sented in section V, while the results are discussed in section
VI. Finally, the conclusion is discussed in Section VII.

II. RELATED WORKS

A general survey of scheduling algorithms for network-on-
chip is carried out by Kadri et al. in [1]. The survey studied
fault-tolerant application remapping approaches and classified
them based on static, quasi-static and dynamic techniques.

Pellerin et al. in [9] surveyed articles that targeted hy-
brid meta-heuristics scheduling algorithms such as the GA
for resource-constrained project scheduling problems. The
research emphasized 32 robust swarm-based scheduling al-
gorithms, concluding that reduced complexity and reliability
criteria are not considered. Having these criteria is essential to
determine the time of which the algorithm consumes to deliver
results.

Pirhoseinlo et al. in [10] proposed an Al-based framework
for scheduling distributed systems. The work utilized neural
networks and a genetic algorithm similar to the approach
proposed in our work. It incorporates the use of Al to predict
the completion time of tasks to ease up the process of
scheduling for the GA. In contrast, our work implements a
meta-scheduling algorithm that uses GA to produce schedules
for the MSG, which is then used to train the GNN. The
resulting GNN is used to predict the temporal priorities of
tasks.

Prado et al. in [11] presented a flexible fuzzy rule based
evolution with swarm intelligence for meta-scheduling in grid
computing. In this work, a unique machine learning approach
was used to lower setting stages.The simulation results of
the proposed approach showed improved functionality of
knowledge acquisition with a swarm intelligence approach and
reduced computational effort.

Rai et al. in [12] describe a meta-scheduler for operating
systems, which influences the process scheduling decisions
in multicore processors-based computer systems. The model
was generated using machine learning to predict L2 cache
behaviour. The authors claimed a 12% speedup using the meta-
scheduler compared to ‘Completely Fair Scheduler’ of the
Linux kernel. The work is similar to our proposed research
in using machine learning techniques for adaptive scheduling.
In the work of Rai et al., adaptability context is targeted
toward the processor load, whereas we consider additional

context events that affect multicores, such as failure and mode
changes. In addition, the machine learning based inference in
this case was designed to assist the scheduler in its operation
by predicting L2 cache behaviour. However, we predict the
temporal priorities of tasks directly.

Zhao et al. in [13] proposed a graph convolutional network
trained to perform scheduling operations in wireless networks,
which further exposes the potential of GNNs in solving
scheduling tasks. The scope did not account for schedule
changes triggered by adaptation, unlike our work, which
focuses on learning the MSG to perform run-time adaptation.

Ma et al. in [14] designed an online planner selection with
GNNs and adaptive scheduling. The GNN learns a swarm-
based algorithm offline. The GNN is used in selecting the
optimal candidate planner that may switch during operation. In
contrast, our work uses GNN to predict the temporal priorities
of tasks.

Andy Auyeung et. al. in [15] proposed a GA algorithm
in cooperation with four heuristics to generate a solution for
the scheduling problem. The proposed solution uses GA to
search for the best possible combination of the four heuristic
scheduling algorithms to generate schedules with shortest
execution time. The results showed that the proposed solution
outperforms the four algorithms individually.

This research is based on the work in [4]; where a GA
based adaptive meta-scheduling algorithm is used to generate
schedules mapped to context events offline. We extend the
capabilities of the previous design by training a GNN model
that replaces GA-based offline precomputation of schedules
by run-time inference on schedules.

III. META-SCHEDULER

The metascheduler computes time-triggered schedules tak-
ing into account the temporal and spatial properties of the
system. The generated schedules will define the succession of
tasks for a particular context event at any given time.

In time-triggered multi-core architectures, adaptation is mo-
tivated by energy efficiency, lower cost for fault-tolerance and
reliability under changing environmental conditions. In such
architectures, an aligned schedule switch is used to achieve
adaptation. The meta-scheduler considers decision variables
[4] ensuring consistency between parent and child schedules
which prevents system failure on the schedule change.

This work builds on the meta-scheduling algorithm proposed
in [4]. Where an offline mode based metascheduler is used to
generate the MSG.

The meta-scheduler computes the MSG using a context
model, an application model and a platform model and context
model as its input.

Context model: It holds information regarding the context
events that are considered at design time. These context
events include the description of failure scenarios, slack events,
operation mode and environmental mode changes.

Platform model: This model holds information regarding the
hardware resources, such as cores, memories, routers and links
between the routers.



Application model: This model describes the computa-
tion tasks with their deadlines, Worst-Case Execution Times
(WCETs), message exchange between resources and reflects
the precedence constraints between the tasks and messages.
Meta-scheduler: This component gathers information from
the application, platform and context models to generate
suitable schedules in the form of JSON files using schedule
algorithms such as the GA. Each computed schedule is related
to a given context event considered, and the output of the meta-
scheduler is the MSG.

Multi-Schedule Graph (MSG): This component is the output
of the meta-scheduler. It is a directed acyclic graph of the time-
triggered schedules that is generated at design time. A node
in the MSG graph is used at any instant during run-time, and
the node selected is based on the corresponding context event.
Dataset: This component is the result of the mapping process
and feature extraction from the JSON file solutions generated
by the meta-scheduler. The node features such as: WCET time,
processor allocation, tasks precedence, messages size, and
routes in the network are extracted and stored in a data object.
Besides the node features, the dataset stores the context event
that causes the schedule to change. The listing below describes
the composition of the context vector inserted into the GNN
as the edge features. The key features define each schedule in
the MSG. In addition, key features are also extracted from the
context event:

o Context type ID: Determines which context event oc-
curred (slack, fault, battery level, user-defined).

o Context value: In the case of a slack or a battery level
event, this element indicates the percentage change.

o Task ID: In which task the context event took place.

o Context time: At what time of the schedule the event
occurred.

o Device ID: Device that was affected by the context event,
for instance a fault in a particular component.

Context event features are stored as edge features in the dataset
data object. The same data object also contains the temporal
priorities that need to be learned by the GNN.

The final dataset comprises the task features and context event
features as the inputs and the temporal priorities as the outputs
that will help to reconstruct the schedule solution.

The generation of the MSG is described in [6] using the
Algorithm 1. The meta-scheduler computes a root schedule
from which a calendar of events is established. It then applies
the earliest event to modify the application or platform model
for each event in the calendar. Subsequently, the GA-scheduler
is executed to generate a new schedule and is then added to the
MSG and linked to the root node. Finally, the meta-scheduler
is called again with the new schedule as the parent node.

The generated MSG in design mode from the previous
design suffers from issues of state explosion where the size
of the generated MSG increases exponentially rendering it
unusable in online mode.

Algorithm 1: GA-based meta-scheduler

Input: Application, Platform and Context Models
Output: MSG
1 Initiate Application model as AM;
Initiate Platform model as PM;
Initiate Context model as Cal;
Initiate Multi Schedule Graph as M SG;
Function AM, PM{
2 Construct initial population (AM);
Selection;
Crossover;
Mutation;
Fitness evaluation (Genome in population, PM);
3 return Schedule with best makespan
}
5 Function meta-scheduler (AM, PM, Cal,
Schedule) {
6 Take earliest event in e in Cal.
cal* = Remove e from cal.
AM*, PM*‘ = Modify AM, PM according to e;
New schedule = GA-scheduler(AM*, PM*)
Add New schedule to MSG as node (Sn);
Add e to MSG as edge (e);
If cal is not empty :
meta-scheduler(AM,PM,Cal,New schedule);
end if;
return MSG
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9 base schedule = GA-scheduler(AM,PM);
add base schedule to MSG as node (Sp);
meta-scheduler(AM,PM,Cal,base schedule)

10 end

IV. PROPOSED MODEL

This work builds on the meta-scheduling algorithm pro-
posed in [4]. Our proposed model uses the MSG generated
by the meta-scheduler to train a GNN-based model that will
be deployed at run-time. Figure 1 illustrates the proposed
architecture of the GNN-based meta-scheduler.

The meta-scheduler generates a MSG at design time, which
is then used to train a GNN model predicting the temporal
priorities of the next schedule. The GNN model is deployed at
run-time as shown in Figure 1. The component of the proposed
model in run-time are explained as follows:

GNN model: This component is the result of the model
training process. The GNN model is trained to predict the
output temporal priorities. After the temporal priorities of the
valid schedule are generated they are sent to the reconstruction
model.

Reconstruction and Safety check: This component takes
predicted temporal priorities and performs a schedule recon-
struction. In addition, it performs safety checks to make sure
precedence constrains are not violated as shown in Algorithm
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Figure 1. Meta-scheduler proposed model

(2) where temporal priorities are taken and assigned to the
appropriate end system based on the communication costs
covering spatial priorities.

Modified schedule: The schedule is the output of the re-
construction block which consists of the schedule generated
in response to the context event adaptation. During run-
time whenever a context event occurs, the context event and
the schedule itself go through a feature extraction process
as shown in Figure 1 (run-time). The features are sent to
the reconstruction model after the temporal priorities are
predicted. The reconstructor then uses the generated temporal
priorities and completes the spatial priorities of the schedule
and performs a safety check to avoid message collisions.

V. EXPERIMENT SETUP

The GA meta-scheduler was used to generate 16,384 sam-
ples for an application model that contains 15 tasks and
14 context events. 80% of the generated data was used for
training the GNN model and 20% is used for testing and
makespan comparison. Pytorch geometric library [16] was
used to perform classication on the MSG’s irregular data struc-
ture, train a continuous kernel-based convolutional operator
GNN based model; a supervised learning Message Passing
Neural Networks (MPNNs) [17] [18] as shown in Equation
(1) which is a neural network that aggregates feature through
passing information from each node to it’s neighbour.

X, =0X;+ > X;-heles)) (1)
JEN(4)

where hg denotes a neural network designed to extract edge
features. X denotes node features. e denotes edge features. ©
denotes adjustable weights.

Algorithm 2: Schedule reconstruction

Input: tasks, msgs, E.S,Context event time
Output: schedule, makespan
1 Function Allocation (tasks,msgs, ES):

2 Remove tasks that started before context event time.
3 Append tasks with satisfied precedence constrains in
tasks_ready
4 for each N in tasks do
5 Select from tasks_ready the tasks with the highest
temporal priority

6 for each m in end_systems do

7 if parents[j] is O then

8 | Append endTime[m] to vector start

9 else

10 Append
mazx(endTime[m], DRT (m, j, msgs, tasks))
to vector start

1 end i

12

13 end for

14 st_time[j] = min(start)

15 end_time[j] = st_time[j] + ex_timelj]

16 end_sys[j] = ES[st_time.idz(min(start))]

17 if parents[j] then

18 for each p in parents[j] do

19 Append inj_time + comm_cost(p, j) in
vector arrrival

20 end for

21 st_timelj] =

max(max(arrival), min(start))

2 end_time[j] = st_time[j] + ex_time[j]

23 endTime[idz.min(start)] = end_time[j]

24 else

25 endTimelidz.min(start)] = end_time[j]

26 end if

27 Remove j from vector tasks_ready

28 Append children][j] to vector tasks_ready

29 end for

30 Append makespan

31 return schedule, makespan

The model utilizes different Multi Layer Perceptrons
(MLPs) that contains 2 layers for edge features, and 4 layers
including the input and output layers with a total of 192,957
adjustable weights. Schedules generated from the GNN model
were compared to the schedules from the GA meta-scheduler
to determine the quality of schedules produced in terms of
makespan. In addition, we compared our approach to sched-
ules generated by the LS. The LS uses the bottom level
to determine task temporal priorities while the GNN based
scheduler uses priorities learned from the GA.

The schedules are categorized according to the number of
tasks that occured after the context event time in each schedule
of the MSG. We provide an insight into the rescheduling
operation using Figure 2. In this example, we consider a
context event occurrence with 50% slack. Tasks that started
before the event occurrence remain the same. However, tasks
that occurred after the event are re-ordered accordingly to
adapt to the context event. Figure 2 shows two schedules used
to illustrate the concept of modifiable tasks. The first schedule
above is without the application of the context event. It shows



the base schedule. The schedule below, shows how a 50%
slack on task 4 is handled. The 50% slack on task 4 means
that task 4 finishes before its WCET. To take advantage of the
slack event, we invoke the meta-scheduler to recompute a new
schedule to adapt to the scenario. By so doing, we get a better
makespan which can then be utilized for saving energy. The
number of task that can be re-scheduled are referred to herein
as modifiable tasks. These tasks in the example are shown in
the shaded portion of the Figure 2 below.
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Figure 2. Rescheduling with context event.

Each sample in the generated 16,384 samples is categorized
according to the number of modifiable tasks. And each cate-
gory is tested separately on all the meta-scheduling algorithms.

VI. RESULTS AND DISCUSSIONS

This section elaborates on the acquired results for training
the GNN model to learn the prediction outputs of the GA
meta-scheduling algorithm. After which we show the results
of the makespans corresponding to the proposed GNN, GA,
and LS.

Figure 3. Shows the train loss for each training epoch
that iterates though the training sample set. The results show
decline in the train loss throughout the training operation.
Equation (2) shows the Cross Entropy Loss function used in
the training the GNN:

M
Loss = — Z Yo, 10g(Po,c) @)

c=1

where M - number of classes y - truth indicator (0 or 1) if
class c is the correct for observation o. p - predicted probability
observation o is of class c.

Throughout the training process, the accuracy of the GNN
inference model training operation is calculated by validating
10% of the training dataset for each epoch as shown in figure
4. The results show a training accuracy of 97% at the end of
training at 180 epochs. In addition, 20% of the entire dataset
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Figure 3. Train Loss.

was used for accuracy validation testing, an accuracy of 76%
was obtained.
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Figure 5. Shows the output results for the makespans
for each schedule generate from the GA, GNN and LS.
Each sample schedule is classified based on the number of
modifiable tasks in each schedule as previously explained in
the experimental setup section. Throughout the dataset, each
schedule (node) in the MSG is given a label that would
define the number of modifiable tasks in the schedule. This
is determined by the occurrence time of the context event
itself. Schedules with the same labels are grouped together
and compared with different meta-scheduling algorithms. The
results show that when the scheduling problem is simple with
less than 10 modifiable tasks, all meta-scheduling algorithms
perform almost the same and the GNN performs the worst
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with an average ranging from 10 to 20 time units difference
from the GA and LS. However, when the complexity of the
scheduling problem is increased with more number of tasks,
the quality of makespan for the list scheduling falls behind
GNN and GA techniques. The results show that in terms of
makespan quality, the GA ranks first, followed by the GNN
at rank 2, and finally the LS.

GA cannot be used in run-time due to its demanding
computational requirements. GA is unsuitable for hard real-
time systems due to its unpredictable high timing and com-
putational requirement. The LS is desirable for hard real-time
application due to its computational speed compared to the
GA. Nevertheless, since the makespan quality is no where
compared to the GA, the proposed GNN technique provides
a way to utilize the benefits of the GA in application with
stringent timing requirements.

VII. CONCLUSION AND FUTURE WORK

The results generated from the GNN based system model
showed great approximation to the GA schedules. The GNN
model is used to learn the scheduling mechanism of the GA,
therefore it is highly improbable for the GNN to outperform
the GA. Nevertheless, the quality of schedules in terms of
makespan generated by the proposed GNN approach shows
great potential to be deployed for real-time operations. This
works studies the impact of the different scheduling algorithms
based on the number of modifiable tasks. Future plans for
this research project include performing further investigations
on GNN meta-scheduling algorithims; There exists several
GNN algorithms that are capable of exploiting the use of edge
attributes to be explored.
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