
Virtual Switch for Integrated Real-Time Systems based on SDN

Hongjie Fang and Roman Obermaisser

University of Siegen, Germany

Abstract— The development trend from federated to inte-
grated architectures, which promise massive cost reduction
through integration of different functions on the same comput-
ing platform, calls for the real-time data exchange mechanism of
the integrated functions. An integrated architecture means that
different functional components are integrated on a computing
node, which were formerly allocated to physically separated
computing nodes. Based on an integrated architecture, a virtual
switch supporting time-space isolation and dynamic configu-
ration has been proposed in our previous work. However, the
virtual switch that is Time Sensitive Networking (TSN) enabled
is an open research problem.

In this paper, we propose a virtual switch that is IEEE
802.1Qbv and IEEE 802.1Qci capable according to the TSN
standard. We deploy the Linux LXRT/RTAI on a PC platform
with 6 physical cores of 3.2 GHz as the execution environment,
and implement the virtual switch in a resource dedicated
way for the proof-of-concept implementation. The experimental
results show the timely deterministic behaviour of the data
switching in our proposed virtual switch.

I. INTRODUCTION

Recent advances in the semiconductor industry drive the
development trends of the computing platforms to evolve
from federated architectures to integrated ones. Extensive
research on integrating multiple functions with different
criticality levels on a shared platform was carried out in
domains like avionic and automotive systems. Corresponding
industry standards like ARINC 653 and AUTOSAR were re-
leased. In ARINC 653 [26], the functions of different Safety
Integrity Levels (SILs) [11] can be integrated based on the
APlication/EXecutive (APEX) interface without interfering
with each other. The AUTOSAR standard defines a Runtime
Environment (RTE) to integrate software components from
different manufacturers without specific knowledge of the
underlying hardware platforms [30]. Mechanisms like tem-
poral and spatial partitioning are designed to prevent fault
propagation between different applications and guarantee the
reserved computing resources for each application, so that
safety critical applications cannot be affected by applications
of lower criticality. From the viewpoint of system devel-
opment, partitioning is one of the necessary prerequisites
for modular certification [23], which enables the integrated
applications to be certified to the respective criticality levels.

Another perspective coming along with integrated archi-
tectures is the internal dependable communication mecha-
nism between applications within a platform. A dependable
communication mechanism should provide temporal and
spatial isolation for safety-critical data flows, meanwhile
guaranteeing the required bounded latency with low jitter

during data transmission. According to the ”fault-error-
failure” chain discussed in [24], the essential reason of the
observable system failures is the system fault. Partitioning
mechanism contributes to prevent fault propagation within
an integrated platform. In ARINC 653, the defined com-
munication mechanism can be classified into inter-partition
and intra-partition communication. The standardised inter-
partition communication mechanism is the static message-
based virtual channel, which logically links partitions via
ports and the implementation is platform specific [33]. The
software components within AUTOSAR communicate with
each other via the Virtual Functional Bus (VFB) [30],
which forms a middleware that provides the infrastructure-
independent communication mechanism. Both of these com-
munication mechanisms target static offline configurations,
in another word, dynamic reconfiguration during operation
is not addressed.

To date, the Software-Defined Networking (SDN)
paradigm has widely caused the network designers to rethink
the classical data forwarding approach [16]. In the SDN
paradigm, the network control plane and the data forwarding
plane are separated from each other, which enables the
forwarding tables in the data plane to be reconfigured during
runtime. SDN gained much attention in both research and
industry communities, since SDN brought a revolutionary
networking paradigm based on the existing layered pro-
grammable network definitions [25]. For example, the Open
vSwitch [17] instantiates the SDN paradigm based on Open-
Flow and enables the data communication between virtual
machines in the cloud computing environments in a layered
way (i.e. separated control plane and data plane). However,
for the safety critical data communication in an integrated
environment, bounded latency with low jitter between com-
municating entities should be taken into account, which is
beyond the scope of Open vSwitch.

Ethernet technologies have been successfully adopted in
many application areas and safety critical applications are
evolving towards more bandwidth and temporal predictabil-
ity. As the conventional network infrastructures have no
capabilities to guarantee bounded latency and low jitter for
hard real-time applications, the IEEE Time Sensitive Net-
working (TSN) task group has introduced several extension
protocols to the IEEE 802.1 Ethernet standard, in order to
enable the standard Ethernet devices to support both critical
and non-critical traffic. The protocols Qbv and Qci in the
TSN protocol set regulate the timing control behaviour of
ingressing and egressing processes in a physical switching



entity, so that identified critical data flows can be guaranteed
with respect to deterministic relay.

Inspired by SDN and TSN, we propose a virtual switch
residing in an integrated environment to provide determin-
istic message switching services by leveraging the SDN
paradigm and TSN. The major contributions of this paper
are as following:

• TSN enabled virtual switches in integrated execution
environment

• SDN capable architecture tackling dynamic reconfigu-
ration

• Schedule model and dispatching algorithm with time-
triggered control

The remainder of the paper is structured as follows.
Section II summarises the related work on virtualized switch-
ing based on an integrated architecture. The concept of
the virtual switch is described in detail in Section III.
Section IV presents the proof-of-concept implementation of
the proposed virtual switch and the experimental results are
shown and discussed in Section V. This paper ends with a
conclusion in Section VI.

II. RELATED WORK

In this section, we analyze the related work regarding the
communication for integrated real-time systems. In addition,
we discuss the development of virtual switching technology.
The major object of this work is to resolve the deterministic
data switching problem in an integrated platform, so the
related TSN protocols (IEEE 802.1Qbv and IEEE 802.1Qci)
are also addressed in this section.

A. AUTOSAR and ARINC 653

In the AUTOSAR standard, the VFB is defined as the
communication mechanism to support interconnection be-
tween software components and provide separation between
applications and the underlying infrastructures. The com-
munication mechanism in AUTOSAR is majorly classified
into client-server and sender-receiver paradigms [12], [19].
As researched by the authors in [6], the timing aspect was
not addressed due to the primary objective that aims at
supporting system integration from the viewpoint of software
engineering. The authors also reveal model mismatches that
lead to unpredictable timing behaviours of applications.
Long, Rongshen, et al. [7] propose extended mapping rules
of AUTOSAR runnable entities to optimize the communica-
tion timing within a computing node. The major idea is to
refine the mapping of runnable entities to the underlying OS
tasks, in order to reduce the context switch and consequently
the communication delay.

In the ARINC 653 standard, the inter-partition communi-
cation is based on statically configured channels between par-
titions and the implementation of channels is infrastructure-
specific. In the SCARLETT project, Bieber et al. [8] pro-
posed the preliminary design of a reconfigurable Integrated
Modular Avionics (IMA) platform and defined the switching
process tackling the system reconfiguration problem under
the identified safety constraints [10]. In the DIANA project,

Engel, Christian, et al. in [9] proposed a configuration
selection mechanism by exploiting a byzantine agreement
algorithm to activate one of the pre-qualified configurations.
To the best of our knowledge, the communication within
the integrated platforms in the avionic domain is based on
switching between pre-defined configurations. The integrated
avionic platforms typically come with the Avionics Full-
Duplex Ethernet (AFDX) that is specified in ARINC 664 Part
7 [2]. AFDX leverages the concept of Virtual Links (VL) to
convey Rate-Constrained (RC) messages while satisfying the
timing and bandwidth requirements for distributed avionic
applications [5].

B. Virtual Networking

In the research field of virtual networking based on an
integrated architecture, the authors in [3] proposed virtual
network services on top of time-triggered communication for
both safety-critical and non safety-critical applications. The
proposed virtual networks leverage offline configured tem-
poral isolation between applications to ensure encapsulation
of different communication entities. The proposed virtual
network was implemented in a DECOS node computer [4].
Dobrescu, Mihai, et al. validated in [14] that packet process-
ing using a parallel approach (i.e. one core, one task) is better
than a pipeline within cores on an multicore platform with
respect to predictable performance, which could be improved
by contention-aware scheduling. Regarding the management
of the virtualized networks, research on adopting SNMP or
Netconf were done in recent years [13], [28].

C. Software Switch

Open vSwitch is one of the most famous OpenFlow
switches and it is widely adopted in the cloud computing
field. In [22], Mian et al. validated that Open vSwitch
is secure at the cost of increased round trip times in
comparison to non-virtualized execution environments for
cloud computing. He and Liang [18] evaluated the security,
Quality of Service (QoS) and network performance of Open
vSwitch, which showed positive results. In order to guarantee
QoS, Akella and Xiong [21] proposed to allocate bandwidth
for satisfying QoS requirements of the priority cloud users
based on Open vSwitch. In this research, the proposed QoS
approach uses a bandwidth and path length based metric
and queuing techniques for different users. Other existing
software switches (e.g.,VALE switch [15], mSwitch [27])
are mainly concerned about throughput, packet rates, etc.
However, for the safety critical data communication in real-
time systems, the bounded latency with low jitter between
communication entities is an important requirement to be
addressed [20].

D. Time Sensitive Networking

TSN enables standard Ethernet infrastructures to converge
both safety-critical and non safety-critical traffic. In [36],
the authors evaluated the Qbv and Qci sub-protocols of
the TSN protocol set in a simulated way and show the
determinism with respect to the ingress and egress policing



that are defined in the TSN protocols. Raagaard, Michael
Lander, et al. in [34] address the dynamic adaptation of TSN
enabled networks. They proposed a heuristic algorithm to
recalculate the Gate Control Lists (GCL) for the switching
entities and leveraged the NETCONF protocol to reconfigure
the switching entities. Extensive research on routing and
scheduling for the TSN enabled switches were carried out
([37], [35], [32], [31], [29]), which continually drive TSN to
be widely adopted in the industry and academia.

III. VIRTUAL SWITCH

Inspired by the development of TSN and due to the
evolving trend from federated architectures to integrated
ones, we propose a Qbv and Qci enabled virtual switch
residing on an integrated platform, in order to close the
research gap of virtual switching guaranteeing bounded delay
with low jitter.

A. Requirements of the Virtual Switch

The obligatory functionality of a virtual switch is to
provide message switching services. In this section, we
analyze the requirements of the virtual switch with respect
to the target services.

1) Timing Determinism: The virtual switch aims at pro-
viding a communication infrastructure for real-time applica-
tions, therefore timing determinism is a prerequisite. From
the viewpoint of a switching entity, the timing requirement
should apply both for ingress and egress points.

2) Spatial Isolation: For integrated applications within a
computing platform, in order to exclude the spatial inter-
ference between applications of different safety-criticalities,
the virtual switch should be designed to provide applications
with dedicated resources to rule out unintended resource
interference.

3) Dynamic Reconfiguration: In the above mentioned
related work, the networking facilities for integrated applica-
tions either guarantee deterministic message switching with
offline defined scheduling and routing, or concentrate on
services that are not hard real-time capable. In contrast, our
virtual switch is online reconfigurable and also able to ensure
bounded latency with low jitter.

B. Virtual Switch

The virtual switch leverages the mechanisms defined in
the TSN Qci and Qbv sub-protocols to achieve the timing
policing. Assume that Time-Triggered (TT) traffic is selected
for the transmission of safety-critical messages, each TT
message arrives at the ingress port of the switch at a specific
point in time according to the schedule. The virtual switch
checks the incoming time of TT messages based on a pre-
defined time-based Access Control List (ACL) and relays the
temporally correct messages to the queues of their egress
ports, which are determined based on the routing tables.
Regarding the egress policing, the Gate Control List (GCL)
defined in the Qbv sub-protocol is specified to control the
dequeuing process of each egress port. The ACLs and GCLs
within a virtual switch are aligned with each other by taking
the relay overhead into account.

C. System Model
For the Qbv and Qci enabled virtual switch, we model the

system from the viewpoints of the system architecture and
the applications.

1) Architecture Model: As depicted in Fig.1, we define
an example architecture model with multiple virtual switches
(i.e., VSW1 and VSW2 in Fig.1) residing on an integrated
platform. In order to demonstrate the functionalities of the
virtual switches, multiple virtual end systems (i.e. VESn in
Fig.1) are also defined. The virtual end systems communicate
with each other via the virtual switches, which result in two
communication scenarios:

• VES → VSW → VES: this scenario represents the
case that the communicating virtual end systems are
connected to the same virtual switch.

• VES → VSW → VSW → VES: this scenario represents
the case that the communicating virtual end systems
are connected to different virtual switches on the same
platform.

Fig. 1. Architecture Model

2) Application Model: Except from the architecture
model, we define the example application model in Fig.2. In
this model, the messages (i.e., m1, m2 and m3) between the
tasks (i.e., T1, T2, T3 and T4) build up the task dependencies
that result in the muster task scheduling in Fig.3. This
muster scheduling indicates the general execution order of
the tasks, while task activation and execution duration are
implementation specific.

Fig. 2. Application Model

3) Virtual Switch Constraints: According to the example
architecture model and the above mentioned requirements,
we describe the detailed constraints of the virtual switch as
follows.

• Synchronised Start: Within an integrated platform, the
virtual switches should have the synchronised time
resources and start in a synchronised manner.

• Relay Overhead: The relay overhead for critical mes-
sages within a virtual switch should be bounded with
low jitter.



Fig. 3. Task Scheduling

• Exclusive Egressing: Although an egress port owns ded-
icated queues, passing through the egress port should be
exclusive for each message at a specific point in time.

• Egress Queuing: In order to ensure deterministic mes-
sage switching, the messages of different data flows
should be either assigned to different queues, when they
are relayed to the same egress port, or the messages
should be placed in the same queue in a temporally
separated way to avoid messages from different data
flows being dispatched together.

4) Schedule Model: From the viewpoint of the integrated
platform, the mapping of tasks should be done before dis-
cussing the overall schedule problem. An example mapping
from the application model to the architecture is as follows:

• T1 → VES1
• T2 → VES2
• T3 → VES3
• T4 → VES4
Following the sketched task scheduling in Fig.3 and the

above given mapping, the schedule model covering the tasks
and virtual switches is shown in Fig.4. In this schedule
model, the tasks and virtual switches are activated period-
ically and the sketched gantt chart presents the schedule
within one period.

Fig. 4. Schedule Model

The discussed communication scenarios (i.e., data flow
within a virtual switch, data flow through multiple virtual
switches) are mapped in Fig.4. Message m1 and m2 cor-
respond to the above identified scenarios, moreover, m2
and m3 dispatched from VSW2 result in the multiplexing

situation at the egress port connected to t4, which calls for
the target dispatching algorithm.

D. Dispatching Algorithm

As discussed, based on the proposed schedule model,
we present in this subsection the algorithm of ingressing
and dispatching process for the virtual switches using time-
triggered scheduling.

Fig. 5. Ingressing Process

If an incoming message is safety-critical, as depicted in
Fig.5, the incoming timing is checked against the configured
ACL. Only the messages arriving in their assigned time
slots are relayed to the egress ports. Otherwise the received
messages are treated as untimely and abandoned. Right after
enqueuing the messages at the egress ports, the dispatching
process should be activated.

Fig. 6. Dispatching Process

According to Fig.6, when the dispatching process is called,
if the GCL enables the selected queue of a egress port to
transport messages, then the selected queue is authorised
for data transmission. The other prerequisite for message
transmission is that there should be enough time left for the
selected queue to dispatch the enqueued messages. Otherwise
the messages should be buffered.

IV. PROOF OF CONCEPT IMPLEMENTATION

In the following section we describe the proof-of-concept
implementation of the virtual switch. We discuss details
of the employed platform that is multiprocessor computing
node. Thereafter we also describe the detailed implemen-
tation of the virtual switch and the emphasis is placed on
the deterministic message switching by leveraging the TSN
mechanisms.



A. Platform

The implementation runs on the PC platform with 16GB
RAM and 6 physical cores of 3.2GHz. We deploy on
this platform the real-time Linux LXRT/RTAI [1] as the
execution environment of the developed virtual switches.
In order to provide dedicated computing resources for each
virtual switch, we reserve two of the physical cores and run
the virtual switches on the isolated cores in a one to one
mapping. Therefore the context switches on the dedicated
physical cores are avoided, which may cause unpredictable
behavior during runtime.

B. Realisation of Virtual Switch

We implement a virtual switch as a kernel module, which
can access the RTAI real-time scheduler and services that
are implemented as kernel modules. As discussed above, one
virtual switch is exclusively assigned to one physical core.

Fig. 7. General Implementation

As depicted in Fig.7, we leverage the real-time fifos
provided by RTAI to implement the communication channels
between virtual end systems and virtual switches, and the
communication channel between virtual switches. The shared
memory (i.e., SHM in Fig.7) is used to store the up-to-date
configuration parameters (e.g., routing information, GCL,
etc.) that is managed by the manager process and consumed
by the virtual switches. From the viewpoint of the computing
platform, this way contributes to the unified configuration for
multiple virtual switches that reside on the same platform.

Regarding the local scheduling of a virtual switch, the
related data structures are shown as follows. From the
viewpoint of a virtual switch, each egress port within the
virtual switch should have its own schedule, more specifi-
cally, the GCL. In order to guarantee low jitter from design,
we implement the whole set of GCLs as a static array
with pre-defined maximum count of egress ports, instead of
dynamically linked list. For the schedule of each egress port,
the GCL duration defines the period of the cyclically enabled
queues within this egress port. And this period is subdivided
into time intervals (i.e., GCL item) which correspond to
different queue masks. The queues of critical data flows are
exclusively enabled to transmit messages, so that one critical
data flow is timely isolated from other flows.

s t a t i c s t r u c t e g r e s s p o r t s c h e d u l e
{

s t r u c t s c h e d u l e e g r e s s p o r t G C L [ c o u n t e g r p o r t ] ;
} ;

s t a t i c s t r u c t s c h e d u l e
{

unsigned i n t GCL dura t ion ;
s t r u c t GCL item GCL[ GCL len ] ;

} ;

s t a t i c s t r u c t GCL item
{

i n t o f f s e t ;
i n t d u r a t i o n ;
u i n t 8 t queue mask ;

} ;

As we mentioned before, the real-time fifos are leveraged
to implement the communication channels between virtual
switches, as well as channels between virtual end systems
and virtual switches, we implement the egress port to be
one-to-one mapped to the fifos. In another word, the queues
of an egress port multiplex the fifo attached to this port.
Each queue records the number of the stored messages with
a predefined maximum count. The way in our implemen-
tation to rule out messages of different critical data flows
interleaving through the fifo is that each critical data flow
owns one dedicated queue.

s t a t i c s t r u c t e g r e s s p o r t
{

i n t o u t p u t f i f o s i d ;
s t r u c t queue a l l q u e u e s [ q u e u e c o u n t ] ;

} e g r e s s p o r t ;

s t a t i c s t r u c t queue
{

i n t i t e m c o u n t ;
i n t h e a d i n d e x ;
i n t t a i l i n d e x ;
s t r u c t q u e u e i t e m queue [ q u e u e l e n ] ;

}queue ;

s t a t i c s t r u c t q u e u e i t e m
{

i n t msg len ;
char i t em [ max msg len ] ;

} q u e u e i t e m ;

Besides the data structures related to the egress ports,
each ingressing message is stored in a vsw ingress buf. After
classifying the stored message, the found egress ports are
recorded before activating the relay process. We will discuss
more details about the message switching process in the
following sections.

s t a t i c s t r u c t v s w i n g r e s s b u f
{

i n t msg len ;
u i n t 8 t vsw rv msg [ max msg len ] ;

} v s w i n g r e s s b u f ;

s t a t i c s t r u c t m a t c h e d e g r e s s p o r t
{

i n t c o u n t ;
i n t p o r t c o o k i e [ c o u n t e g r p o r t ] ;

} m a t c h e d e g r e s s p o r t ;



The implemented workflow of the message switching
within a virtual switch in depicted in Fig.8. An ingressing
port waits for the semaphore that is assigned to the attached
fifo, which as discussed connects different communicating
entities. Except for the timely synchronised message switch-
ing, this implementation also leverages the semaphore as the
synchronisation mechanism between communicating entities.
The incoming time of a message is checked against the
ACL after classification and finding the egress ports. The
successfully ingressed critical messages are enqueued in the
egress ports and dispatched if the GCL enables the enqueued
queue for data transmission.

Fig. 8. Workflow of Virtual Switch

In this implementation, we use the local system clock as
the global time for virtual end systems and virtual switches.
The synchronised activation of multiple virtual switches is
done by adapting the start delay of a latter loaded virtual
switch to a predefined delay, so that all virtual switches are
activated simultaneously.

C. Temporal & Spatial Isolation

For each virtual switch that owns a dedicated physical
core, we implement separate processes to manage the in-
gressing ports of the connected entities. For example, in
VSW1 in Fig.7, we implement two processes to manage the
ingressed messages from VES1 and VES2, correspondingly.
As shown in Fig.9, each process is run exclusively in a 10
ms period and for the duration of 5 ms, which ensures the

temporal isolation between processes in a virtual switch and
consequently eliminates race conditions of the processes by
design.

Fig. 9. Task Schedule in Virtual Switch

In the proof-of-concept implementation, assume that each
egress port owns 8 queues and two of them are assigned
to time-triggered data flows, we use the example GCL (see
TABLE I) for all egress ports. For simplification purpose,
we assume the frame processing time is neglectable, so that
the ACL is identical to the GCL.

TABLE I
EXAMPLE GATE CONTROL LIST

start time duration queue mask remark
0µs 30µs 10000000 time-triggered frames
30µs 30µs 01000000 time-triggered frames
60µs 40µs 00111111 other frames

D. Realisation of Application

Since the virtual end systems are not the emphasis of this
paper, we implement the tasks as a simple linux task sending
message periodically and waiting for the incoming messages.
For the delay measurement purpose, we insert a time stamp
of u int64 t type between the default Ethernet header and the
data as shown in Fig. 10.

Fig. 10. Example Frame Format

Since T1 in Fig.2 provides the source message of the
whole setup, we configure the T1 to send the initial message
in a 5 ms period, and the other tasks work in a busy waiting
way.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In this experiment, we investigate the determinism of the
message switching within the virtual switches. As discussed
in section III-C.1, there are two identified communication
scenarios in our system setup, which happen either within a
virtual switch boundary or involve multiple virtual switches.

We measure the message switching overhead caused by the
virtual switches, more specifically, the consumed time from
the ingress ports to the egress ports that are connected to the
source and sink virtual end systems. The sending virtual end
system is configured to send out 1000 messages. The Fig.11
and Fig.12 show the overhead of the local switching within
a virtual switch.



Fig. 11. Overhead for Data Flow between VES1 and VES2

The overall latency caused by the virtual switches for the
local message transportation is in the range from 0.5 µs to 2
µs. Several exceptions up to 5 µs could be observed in Fig.11
and Fig.12. In the implementation, we isolate one physical
core to run a virtual switch, as discussed in section IV-C.
Since timing resource is necessary to enable the process
switching, one aspect to mention is that hardware timer
interrupts are redirected to other physical cores in this case,
which requires the inter-core communication for measuring
the overhead that could result in observable jitters. Another
aspect is that the jitter caused by the RTAI scheduler could
also accumulate to the significant jitters in the measured
results.

Fig. 12. Overhead for Data Flow between VES3 and VES4

The overhead for data flow between VES2 and
VES3/VES4 in Fig.7 is measured one after another within
VSW2, therefore the results in Fig.13 and Fig.14 are in the
same distribution. The difference of the measured overhead
for the same message (depicted in Fig.15) indicates the
overhead for enqueuing and dispatching a message, since a
message from VES2 is relayed to VES3 and VES4 in order.

As discussed in section IV-C, the ingressing processes of
the virtual switches are run in a 10 ms period and each with
5 ms runtime, and the relay/dispatching actions are also fin-
ished in the ingressing process context. In our configuration,
the process in VSW2 for receiving messages from VSW1 is
scheduled to run after the dispatching process in VSW1. In
another word, the VSW2 receives messages from VSW1 in
about 5 ms, after VSW1 dispatches messages to VSW2. This
logical analysis is also confirmed by the results in Fig.13 and
Fig.14, which show the switching overhead for a data flow
passing through two virtual switches.

Fig. 13. Overhead for Data Flow between VES2 and VES3

Similar to the measured local delay caused by virtual
switches that are depicted in Fig.11 and Fig.12, the majority
of the overhead in Fig.13 range from 5000 µs to 5005 µs.
Despite the delay caused by schedule (i.e., 5 ms), the left
overhead (i.e., 0-5 µs) is implementation related that need
to be discussed. As aforementioned, the major reasons for
this observable overhead are inter-core communication due to
timer on other core and the jitter caused by RTAI scheduler.
For this inter virtual switches communication scenario, jitters
could accumulate along the message routing path, which
result in the wider range of overhead (5 µs) than the intra
virtual switch communication (2 µs).

Fig. 14. Overhead for Data Flow between VES2 and VES4

Fig. 15. Overhead for Enqueuing & Dispatching of one Message

VI. CONCLUSION AND FUTURE WORK

In this work, we propose the IEEE 802.1Qbv and IEEE
802.1Qci enabled virtual switch for integrated real-time
systems residing on single platform and define the model of
communication infrastructure with multiple virtual switches.



The corresponding schedule model is defined as the base for
the dispatching algorithm in a time-triggered way. The proof-
of-concept implementation is done in a resource dedicated
way by leveraging the Linux RTAI patch. The experimental
results demonstrate the capability of the virtual switch to
switch messages in a timely deterministic way.

In this work, the system setup runs on a single computing
node. The future work will be the hybrid switching environ-
ment with physical and virtual switches to enable a physi-
cally networked system, which also brings the challenges in
the consistent dynamic configuration of the whole system.

VII. ACKNOWLEDGMENT

This project was funded by the European Regional Devel-
opment Fund (ERDF).

REFERENCES

[1] Beal, Dave, et al. ”RTAI: Real-time application interface.” Linux
Journal 29.10 (2000).

[2] ”AIRCRAFT DATA NETWORK PART 7 AVIONICS FULL DU-
PLEX SWITCHED ETHERNET (AFDX) NETWORK”. ARINC
Specification 664p7 (2005).

[3] Obermaisser, Roman, Philipp Peti, and Hermann Kopetz. ”Virtual
networks in an integrated time-triggered architecture.” 10th IEEE
International Workshop on Object-Oriented Real-Time Dependable
Systems. IEEE, 2005.

[4] Obermaisser, Roman, and Philipp Peti. ”Realization of virtual net-
works in the DECOS integrated architecture.” Proceedings 20th IEEE
International Parallel & Distributed Processing Symposium. IEEE,
2006.

[5] Alena, Richard L., et al. ”Communications for integrated modular
avionics.” Aerospace Conference, 2007 IEEE. IEEE, 2007.

[6] Racu, Razvan, et al. ”Automotive software integration.” Proceedings
of the 44th annual Design Automation Conference. ACM, 2007.

[7] Long, Rongshen, et al. ”An approach to optimize intra-ecu com-
munication based on mapping of autosar runnable entities.” 2009
International Conference on Embedded Software and Systems. IEEE,
2009.

[8] Bieber, Pierre, et al. ”Preliminary design of future reconfigurable IMA
platforms.” ACM Sigbed Review 6.3 (2009): 7.

[9] Engel, Christian, et al. ”Enhanced dispatchability of aircrafts using
multi-static configurations.” Embedded Real Time Software and Sys-
tems Congress (ERTS 2010), Toulouse, France. 2010.

[10] Bieber, Pierre, et al. ”Preliminary design of future reconfigurable IMA
platforms-safety assessment.” 27th Congress International Council of
the Aeronautical Sciences (ICAS 2010). 2010.

[11] IEC 61508 Edition 2.0: Functional Safety of Electrical/Electronic/Pro-
grammable Electronic Safety-Related Systems, IEC: Int. Electrotech-
nical Commission, 2010.

[12] Dafang, Wang, et al. ”Communication mechanisms on the virtual
functional bus of AUTOSAR.” 2010 International Conference on
Intelligent Computation Technology and Automation. Vol. 1. IEEE,
2010.

[13] Daitx, Fabio Fabian, Rafael Pereira Esteves, and Lisandro Zam-
benedetti Granville. ”On the use of SNMP as a management interface
for virtual networks.” 12th IFIP/IEEE International Symposium on
Integrated Network Management (IM 2011) and Workshops. IEEE,
2011.

[14] Dobrescu, Mihai, Katerina Argyraki, and Sylvia Ratnasamy. ”Toward
predictable performance in software packet-processing platforms.”
Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12). 2012.

[15] Rizzo, Luigi, and Giuseppe Lettieri. ”Vale, a switched ethernet for
virtual machines.” Proceedings of the 8th international conference on
Emerging networking experiments and technologies. ACM, 2012.

[16] Levin, Dan, et al. ”Logically centralized?: state distribution trade-offs
in software defined networks.” Proceedings of the first workshop on
Hot topics in software defined networks. ACM, 2012.

[17] He, Zongjian, and Guanqing Liang. ”Research and evaluation of net-
work virtualization in cloud computing environment.” Networking and
Distributed Computing (ICNDC), 2012 Third International Conference
on. IEEE, 2012.

[18] He, Zongjian, and Guanqing Liang. ”Research and evaluation of net-
work virtualization in cloud computing environment.” Networking and
Distributed Computing (ICNDC), 2012 Third International Conference
on. IEEE, 2012.

[19] Chen, Hao, et al. ”Research on Client/Server Communication Mech-
anism in AUTOSAR System.” 2013 IEEE 11th International Confer-
ence on Dependable, Autonomic and Secure Computing. IEEE, 2013.

[20] Obermaisser, Roman, and Donatus Weber. Architectures for mixed-
criticality systems based on networked multi-core chips. Emerging
Technology and Factory Automation (ETFA), 2014 IEEE. IEEE, 2014.

[21] Akella, Anand V., and Kaiqi Xiong. ”Quality of service (QoS)-
guaranteed network resource allocation via software defined network-
ing (SDN).” Dependable, Autonomic and Secure Computing (DASC),
2014 IEEE 12th International Conference on. IEEE, 2014.

[22] Mian, Adnan Noor, et al. ”Effects of virtualization on network and
processor performance using open vswitch and xen server.” Utility
and Cloud Computing (UCC), 2014 IEEE/ACM 7th International
Conference on. IEEE, 2014.

[23] Obermaisser, Roman, and Donatus Weber. ”Architectures for mixed-
criticality systems based on networked multi-core chips.” Emerging
Technology and Factory Automation (ETFA), 2014 IEEE. IEEE, 2014.

[24] Laprie, Jean-Claude. ”Dependable computing: Concepts, limits, chal-
lenges.” Special issue of the 25th international symposium on fault-
tolerant computing. 1995.

[25] Jarraya, Yosr, Taous Madi, and Mourad Debbabi. ”A survey and a
layered taxonomy of software-defined networking.” IEEE Communi-
cations Surveys & Tutorials 16.4 (2014): 1955-1980.

[26] Airlines Electronic Engineering Committee. Avionics application soft-
ware standard interface part 1-required services. ARINC Document
ARINC Specification 653P1-4, Aeronautical Radio, Inc., Maryland,
2015.

[27] Honda, Michio, et al. ”mSwitch: a highly-scalable, modular software
switch.” Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research. ACM, 2015.

[28] Santos, Paulo Roberto da Paz Ferraz, Rafael Pereira Esteves, and
Lisandro Zambenedetti Granville. ”Evaluating SNMP, NETCONF, and
RESTful web services for router virtualization management.” 2015
IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM). IEEE, 2015.

[29] Drr, Frank, and Naresh Ganesh Nayak. ”No-wait packet scheduling
for IEEE time-sensitive networks (TSN).” Proceedings of the 24th
International Conference on Real-Time Networks and Systems. ACM,
2016.

[30] Safe4RAIL Project, ”D2.1 Report on state-of-the-art of ’functional
distribution architecture’ frameworks and solutions”, 2016.

[31] Craciunas, Silviu S., et al. ”Scheduling real-time communication in
IEEE 802.1 Qbv time sensitive networks.” Proceedings of the 24th
International Conference on Real-Time Networks and Systems. ACM,
2016.

[32] Craciunas, Silviu S., R. Serna Oliver, and TTTech Computertechnik
AG. ”An overview of scheduling mechanisms for time-sensitive net-
works.” Proceedings of the Real-time summer school Lcole dt Temps
Rel (ETR) (2017).

[33] Fang, Hongjie, and Roman Obermaisser. ”Execution Environment
for Mixed-Criticality Train Applications Based on an Integrated Ar-
chitecture.” 2017 International Conference on Promising Electronic
Technologies (ICPET). IEEE, 2017.

[34] Raagaard, Michael Lander, et al. ”Runtime reconfiguration of time-
sensitive networking (tsn) schedules for fog computing.” 2017 IEEE
Fog World Congress (FWC). IEEE, 2017.

[35] Nayak, Naresh Ganesh, Frank Drr, and Kurt Rothermel. ”Routing
algorithms for IEEE802. 1Qbv networks.” ACM SIGBED Review 15.3
(2018): 13-18.

[36] Pahlevan, Maryam, and Roman Obermaisser. ”Evaluation of time-
triggered traffic in time-sensitive networks using the opnet simulation
framework.” 2018 26th Euromicro International Conference on Paral-
lel, Distributed and Network-based Processing (PDP). IEEE, 2018.

[37] Nayak, Naresh Ganesh, Frank Drr, and Kurt Rothermel. ”Incremen-
tal flow scheduling and routing in time-sensitive software-defined
networks.” IEEE Transactions on Industrial Informatics 14.5 (2018):
2066-2075.


