
Generation of a Diagnosis Model for
Hybrid-Electric Vehicles using Machine Learning

Simon Meckel, Roman Obermaisser, Jie-Uei Yang
Embedded Systems Group, University of Siegen, Germany

Abstract—Online fault-diagnosis on system level for complex
mechatronic systems takes multiple sensor measurements of
the various components into account and contributes to a
significantly increased system reliability by tracking down faults
in the system at run time, enabling fault-specific recovery
actions, such as reconfigurations. Ongoing efforts in the
technological development of automobiles, especially in the field
of driver assistance systems, yield more and more safety-critical
systems, e.g., breaking control systems, and thus generate a
high demand for reliable online diagnosis systems. In order
to perform fault diagnosis on system level, the interrelations
between all measurements must be determined, which is a
challenging and often demanding task done by human system
experts. In this paper we present a systematic approach based
on machine learning to establish an online diagnosis system for
a hybrid-electric vehicle model.

Keywords—System Level Online-Diagnosis; Real-Time; Ma-
chine Learning; Feature Extraction

I. INTRODUCTION

Modern mechatronic systems, ranging from automobiles
with advanced driver assistance systems to aircrafts and power
plants, have complex architectures and achieve their function-
alities through an interaction of multiple components. Since
faults in the system or in a component cannot be prevented
at all times, it is the goal of online fault diagnosis to detect,
identify and, if applicable, make the system to recover from
occurred faults by performing fault-specific recovery actions,
e.g., reconfigurations. Typical faults include a faulty design of
a component or a system, transient and permanent hardware
faults, imprecise specifications or erroneous user operations.
Still, online fault diagnosis is often limited to the observation
of individual component behavior with specialized diagnosis
methods, such as limit checking of sensor measurements
or parity checks of system models. Detected discrepancies
are straightforwardly mapped to a root cause. Due to the
interactions of the components, however, the root causes of
faults can naturally be tracked down more precisely when
multiple measurements are taken into account. A sound deci-
sion on occurred faults builds the foundation for fault-specific
recovery actions. Online fault-diagnosis on system level aims
at detecting and diagnosing faults in a system at run time
by deriving and evaluating a multitude of diagnostic features,
e.g., from sensor measurements, signal models, or process
models. For this, on the one hand the diagnostic procedures
for the single components are to be defined. On the other hand,
the interrelations of the components are to be determined in
order to know how components influence measurements at

other components. For a fast and assured root cause analysis
it is of high interest in which order the signals are best to
be evaluated, to keep the overall number of diagnostic steps
as low as possible. The trend in the automotive industry goes
towards electric vehicles and hybrid-electric vehicles (HEV).
When implementing (safety-critical) driver assistance systems
to these newly developed automotives, it is of high interest to
include online diagnosis systems as well, which, however, is
challenging.

Diagnosis systems are naturally application specific, e.g.,
model-based diagnosis (in [8] for electric drives) relies on
accurate mathematical models of the applications. In [2] we
find a robust fault diagnosis technique for the traction system
of an electric vehicle. General diagnosis approaches are to be
modified and adapted to each system or application, which is
often a demanding task and requires the knowledge of human
system experts. For that reason there is a high demand for
state-of-the-art online diagnosis systems that can be set up in
an automatic, systematic, and less effortful manner. Preventing
false alarms and no fault found situations as well as diagnosing
faults with a broad diagnostic coverage in bounded time are
major challenges for online fault diagnosis systems.

In this regard, data-based diagnosis methods have been ap-
plied by many researchers (e.g., [3], [4], [11]) as these methods
do not require any knowledge about the process parameters or
a model about the system. For a feature extraction and fault
classification they only require a database of healthy and faulty
system conditions. The data-based methods can be additionally
combined with explicit knowledge about the process, e.g.,
human expertise can help to define suitable datasets, diagnostic
features, or provide other constraints. Prototypic platforms or
implementations that come along with a variety of different
sensor measurements, from which the system behavior can
be extracted, are highly valuable during the development
phase of state-of-the-art hybrid-electric systems (see also [7]).
Especially since a faulty system behavior can be systematically
simulated with these implementations, they build a foundation
for an automated generation of an online diagnosis system.

To cope with the difficulty of setting up a diagnostic model
supporting system-level online diagnosis we present a two-
stage approach for a systematic design of a qualified diagnostic
model for hybrid-electric vehicles. The two-stage approach
comprises an offline part and an online part. The offline part
includes the selection of diagnostic features, their evaluation
strategies, and the extraction of the diagnostic model, i.e., the
diagnostic dependencies, with a machine learning algorithm.

The online part refers to the execution of the fault-inference
process based on the diagnostic model at run time of the
system.

The remainder of this paper is organized as follows:
Section II defines the system model, fault model, and the
diagnostic model. In Section III we introduce our simulation
framework. The applied machine learning algorithm used to
generate the diagnostic model is addressed in Section IV, fol-
lowed by a detailed description of the experimental procedures
in Section V. An example and evaluation of our approach is
presented in Section VI before the paper is concluded with a
future work section and an overall summary in Sections VII
and VIII.

II. MODEL

In order to perform fault diagnosis on system level and to
be able to certainly detect and accurately identify faults in a
complex system we define a system model, a fault model and
a diagnostic model on which our design process is based.

A. System Model

Our goal is to diagnose faults within a mechatronic system,
which achieves its functionalities through the interactions of
multiple components. We define our system model as generic
as possible, yet with a view to hybrid-electric vehicles.

The system model describes the composition of components
and their interconnections. In this way, complex tasks can
be modeled, e.g., a control system. A component accepts
specified types of input signals and produces specified output
signals. For instance, the component electric motor expects
an electric signal input (voltage, current) and produces a
mechanical output. Each component may be modeled as a
composition of subcomponents, e.g., a battery may comprise
multiple cells (subcomponents). The relation between input
and output signals of components are either directly defined by
mathematical equations or, on a higher hierarchical level, re-
sults from the interrelations of subcomponents. In our domain
of interest (hybrid-electric systems) components are mainly
belonging to the areas of power systems (e.g., motors) and
electronics (e.g., sensors). Connections between components
are either electrical, mechanical, or a signaling line. Sensors
are components that convert physical quantities (e.g., voltage)
into data values to be used for processing. With the sensors,
signal patters at the input and output ports of components are
collected. This data forms the foundation for the system-level
analysis.

B. Fault Model

Faults in a system originate from various reasons, e.g., a
faulty design of a component, wear, overload, software faults,
or erroneous user operations, amongst others. We classify
faults according to their kind of appearance, their duration, and
their underlying cause. In our fault model a fault can abruptly
or incipiently appear, that means, a component or a subsystem
can either fail suddenly without any prior indication within
measurements or a faulty system behavior can unfold over

a certain time span (degrading performance). Once occurred,
a fault can be permanent, intermittent, or transient, however,
within this work we restrict faults to be permanent.

C. Diagnostic Model

Faults in the system (failure or degradation of a component)
are reflected in the measured signals. A diagnostic decision
can be consequently conducted based on the analysis and
processing of fault indications derived from the sensor signals.
In the case of a fault in a component the monitored signal
behaviors differ from a no fault situation and the changes
can affect multiple signals. Obviously, these characteristic
changes may differ depending on the driving situation (e.g.,
acceleration mode or cruise mode); accordingly, one and the
same fault may manifest itself in a different way in the signals.

The diagnosis of different faults requires the execution of
different signal processing and feature extraction tasks in a
defined order [9]. The dependencies between the diagnostic
operations are modeled in a diagnostic directed acyclic graph
(DDAG) denoted as G = (T,E, (`e)e∈E), where T is a set
of tasks t and E is a set of ordered pairs (t, t′) modeling
a precedence relation between two tasks. Edges from E are
called (logical) channels. For a channel e, the number `e ∈ N
specifies the size of the message that is sent via the channel
e. Task t′ depends directly on t, iff (t, t′) ∈ E. A task
may depend on multiple others and in turn may work as a
prerequisite for other tasks [6].

In case of a fault, the attained fault indications initially
provide evidence for a certain fault but may yet hold incon-
clusive information at a certain node of the DDAG (e.g., if
confirmative information from other nodes is not yet avail-
able). The degree of confidence of a correct fault identification
increases with more information merged. The generation of the
diagnostic model, i.e., finding signal relations in the data as
well as adapting the diagnostic features is performed by the
use of a machine learning algorithm.

III. SIMULATION FRAMEWORK

The simulation framework is the environment for our system
model, i.e., an HEV-model, to be executed. The simulations of
healthy and faulty system behavior together with the process
of gathering sensor data produces the inputs for the subsequent
automatic diagnostic model generation.

A. Hybrid-Electric Vehicle Model

In order to demonstrate our two-stage diagnosis system
approach for hybrid-electric vehicles we introduce a Simulink
model1, that offers an abstraction of a hybrid-electric car.

As depicted in Figure 1 the model integrates an electrical
and mechanical part with various components. The main com-
ponents of the high-voltage electrical part include an electric
motor, a generator, a voltage converter and a battery. The
mechanical part comprises a power split device that combines

1Hybrid-Electric Vehicle Model in Simulink,
http://www.mathworks.com/matlabcentral/fileexchange/28441-hybrid-
electric-vehicle-model-in-simulink

Naturwissenschaftlich-Technische Fakultät
Department Elektrotechnik und Informatik

Simulation Model

An Architecture for Online-Diagnosis Systems supporting
Compressed Communication 1

Based on the Hybrid-Electric Vehicle Model from Mathworks®

Electrical system

Battery
DCDC converter

Generator
Electric motor

Internal combustion
engine

Planetary gear

Vehicle
dynamics

Control logic

Set value
(speed)

Measured
Value (speed)TReq_Mot

TReq_Gen

Shaft_M

Thr_ICE

n_ICE

Shaft_G

Shaft_ICE

E_Sys

Fig. 1. Overview of the HEV-model

an internal combustion engine (ICE) with the generator and
the driveshaft, while the electric motor is directly connected
to the driveshaft. Via the power split device the ICE fulfills
two tasks: supporting the electric motor to drive the car and
extending the car’s operating range by charging the battery via
the generator. A mode logic manages the interaction between
these units (e.g., turning on or off the generator depending
on the current battery state of charge and driving situation).
Many built-in sensors, such as voltage sensors, current sensors,
torque sensors, or tachometers, allow to capture the com-
ponents in various driving situations and health states. The
temperature of different components as well as the mode logic
is also monitored. Connections between the components can be
mechanical (green) or electrical (blue, within the subsystem).
A connection via a black line indicates that control signals
are being exchanged. The Simulink model allows to simulate
the car’s behavior according to a driving cycle (i.e., a velocity
profile) input.

B. Fault-Injection

In order to simulate different faults in the components, e.g.,
in the battery, electric motor, or generator, we modified and
extended the original Simulink model. Fault types include
complete component failures that suddenly occur (step-wise
faults) as well as scenarios where components show a de-
grading functionality over some time (drift-wise faults). The
injection of a fault can be done at different levels of detail.
For instance, if the battery of our HEV-model is modeled as a
composition of multiple cells, each cell can fail independently
(e.g., voltage drop, short circuit). Accordingly, specialized pro-
cedures are implemented to accomplish the fault injection for
each relevant component. For every component the underlying
model can be exchanged or modified depending on the purpose
or the requirements of the analyses to be conducted. It can
be generalized, the more different faults can be simulated,
the greater the diagnostic coverage that can be achieved as
more datasets are available for the generation of the diagnostic
model. Faults can be induced at run time of the simulation at
arbitrary times, independent from the current driving situation.
In this way we established a fault-injection framework2 to

2Extended HEV-model with fault injection framework,
https://networked-embedded.de/es/index.php/dakodis.html

produce various datasets with the monitored signals of fault-
free and faulty system behaviors. This data implicitly holds
the information regarding fault effects and component (resp.,
signal) interrelations and forms the basis for the machine
learning algorithm to extract the diagnostic dependencies.

IV. MACHINE-LEARNING

The performance of diagnosis systems is often limited
where particularly two factors play an important role. Firstly,
fault diagnosis typically starts at component level, that means,
single components of a system are examined individually.
Measurements or process outputs of such a component or a
subsystem are not seen in the context of others and faults are
straightforwardly mapped to root causes. It is thereby already
challenging to select and adjust an appropriate diagnostic
method. This also includes the selection of diagnostic features
and their evaluation process, which is often done manually
and necessitates experienced human system experts. Secondly,
modern systems can be greatly complex and extremely chal-
lenging to diagnose when measurements are not seen in
context, i.e., on system level. In order to isolate and manage
an occurred fault, its root cause has to be identified through a
process of evaluating confirmative and unsupportive diagnostic
information from various measurements. During this process
particular faults are included or excluded and the actually
occurred fault is eventually specified.

A. Selection of Fault Diagnosis and Machine Learning Models
A DDAG as introduced in Section II-C has the natural

structure of node dependencies, which creates a sequential
implementation of tasks to be performed for the diagnostic
process on system level. We intend the creation of DDAGs
to be a standardized process, that avoids human subjective
influences. Therefore, data-driven methods are proposed for
the creation of DDAGs; the advantages include the following
points:
• Data is taken from the process and measurements only.

The algorithm relies less on human expert knowledge
and experiences and thus reduces personnel costs and
potential human conflicts.

• The premises of knowledge of the internal structures
and logics of systems are excluded. This trait is a huge
advantage in the industry for fault diagnosis.

• With the predictor importance estimate good indications
of which sensor data are important and which are not is
provided.

• More flexibility and better maintainability is provided
when system topologies are altered or new faults are to
be analyzed.

Machine learning algorithms interpret and predict datasets
and can support the generation of a data-driven mode. The
classification decision tree model with standard CART (Clas-
sification and regression trees) algorithm is selected for our
research for the following reasons:
• It handles multi-class classifications with less effort.
• Not all features for the test data have to be present and

analyzed for classification.
• A decision tree can be converted to a DDAG.
• The sequential tasks presented by a decision tree are

straightforwardly to be scheduled to a given system
infrastructure.

B. Decision Tree Algorithm

The learning process requires input datasets, e.g., mea-
surements of the system, preferably for all scenarios to be
classified. Besides, each dataset must have a label, indicating
to which fault class it belongs. Another prerequisite is the
definition of a pool of diagnostic features potentially to be
applied for the diagnostic inference process.

In the field of machine learning the features in datasets
are also referred to as predictors. Standard CART selects the
split predictor that maximizes the split-criterion gain over all
possible splits of all predictors [1]. Therefore, the calculation
of Gini’s Diversity Index (GDI, see also Gini Impurity) is
included into the algorithm.

I(p) =

J∑
i=1

pi(1− pi) =

J∑
i=1

pi −
J∑

i=1

p2i = 1−
J∑

i=1

p2i (1)

The mathematical expression of GDI is shown in Equa-
tion 1; pi is the probability of the label i being classified
into one sub-node. The term (1 − pi) consequently denotes
the probability of misclassified labels. A node containing only
one type of labels has a GDI of zero and an impure node will
have a positive GDI. Assuming a predictor A splits S into
subsets Si the Gini gain can be calculated from the weighted
average over all sets resulting from the split (i.e., the average
entropy) and the entropy of the original set:

GiniGain(A,S) = Gini(S)−
n∑

i=1

|Si|
|S|

Gini(Si) (2)

In Equation 2 GiniGain(A,S) denotes the Gini gain after
the split with predictor A, Si as the partition count in sub-node
i and S as the count before the split. After evaluating the Gini
gain for every predictor, the algorithm selects the predictor
which has the highest Gini Gain for splitting. The calculation
iterates itself as the tree continues to grow. It is terminated
when the termination condition is met.

Naturwissenschaftlich-Technische Fakultät
Department Elektrotechnik und Informatik

Driving cycles
for training

Driving cycles
for testing

HEV modelHEV model

Driving cycles
for templates

HEV model

Decision tree
algorithm

Feature
extraction

Feature
extraction

Evaluation of
DDAG

Offline Online

Raw dataset
templates

Raw
datasets

Raw
datasets

DDAG

Fault
injection

Fault
injection

Driving cycles
for training

Driving cycles
for testing

HEV modelHEV model

Driving cycles
for templates

HEV model

Decision tree
algorithm

Feature
extraction

Feature
extraction

Evaluation of
DDAG

Offline Online

Raw dataset
templates

Raw
datasets

Raw
datasets

DDAG

Fault
injection

Fault
injection

Fig. 2. Generation of the diagnostic directed acyclic graph

V. EXPERIMENTAL PROCEDURE

A valuable output of the machine learning algorithm in
the form of a decision tree can be only expected, if certain
prerequisites are fulfilled. They include a suitable selection
of diagnostic features and datasets of healthy and faulty sys-
tem conditions. The decision tree then reveals the diagnostic
dependencies, i.e., the order of diagnostic conclusions (split
predictors and corresponding split parameters). The tree can be
converted into a DDAG, which implicitly contains information
about necessary input signals, such as sensor data or process
parameters, and incorporates the online processing steps for
the feature extraction, summarized in the form of diagnostic
tasks.

A. Process Overview

The experimental procedure is outlined in the schematic
diagram in Figure 2. The offline part is shown to the left of
the dashed line and describes the generation process of the
diagnostic dependency graph. Once the graph, i.e., the logical
model, is established it can be scheduled to the physical system
(e.g., ECUs or other computation units), forming the online
diagnosis system.

Simulating the HEV-model with specially designed driving
cycles for so called templates and for training yields raw
datasets from which features are extracted (Sections V-B and
V-C). The obtained training data (healthy and faulty datasets)
is fed to the decision tree algorithm to generate a decision tree
that classifies the training data. The tree is evaluated by cross-
checking the prediction of test data and its labels. The growing
of a decision tree ends when the termination condition is met.
This is dependent on the correlation of data, which is highly
unpredictable. The overall time of creating a decision tree
can be hardly estimated, however, after the tree is determined
all calculation procedures are plannable and predictable. The

decision tree is transformed into a DDAG, which includes
additional information about the signals to be evaluated at
a certain stage and can combine several processing steps,
e.g., subsequent decisions that rely on the same features. The
implementation of a DDAG with test data is regarded as an
online process. This implies that an execution of a DDAG with
test data or new data in a real-time environment is possible.

B. Driving Cycles for Templates, Training, and Testing

The creation of driving cycles in combination with simu-
lations of the vehicle behavior is important for two reasons.
On the one hand, as further addressed in Section V-C, useful
features can be obtained when the norm of the signals is
known, i.e., the healthy system behavior. This knowledge
is extracted and summarized by conducting simulations of
a set of abstracted driving cycles of particular speed and
acceleration profiles. We denote the obtained raw signals from
these simulations as templates in the following. Considering
a speed range from 20 km/h to 120 km/h and a velocity
interval of 20 km/h while covering the three driving modes
cruise, acceleration, and deceleration (all constant), we create
6 · 3 = 18 simplified velocity profiles all with a duration of
at most 40 s. Making use of such abstracted driving cycles
for the purposes of diagnostic feature extraction as well as
training and testing, the classification algorithm implies that
complex driving cycles such as the WLTP3 driving cycles or
real world driving situations can be segmented into parts of
constant acceleration and speed values. On the other hand,
the completeness of driving cycles (situations) is important as
the machine learning algorithm cannot predict well in domains
not covered by driving cycles. It is therefore essential that both
the driving cycles used for the template signals as well as the
driving cycles used to generate training data for the machine
learning algorithm are appropriately chosen. For instance, the
machine cannot predict the behavior of the car driving at
120 km/h well if there was not any prior knowledge about
the behavior with inputs of this region.

Driving cycles for training induce random offsets to veloc-
ities and accelerations, which assures certain offset tolerances
for classifications. The model possibly performs unsatisfac-
torily on test data with offsets, if training data is perfectly
adjusted and contain no offsets between training and templates.

The third set of driving cycles is created in order to test the
performance of the classifier. These driving cycles also contain
offsets of both parameters and show a good coverage inside
the overall velocity range. Besides, driving cycles for testing
should not coincide with those used for training.

C. Diagnostic Feature Selection

A good feature captures the characteristics of a system
in the current state and a set of multiple good features can
differentiate between a system operating in a healthy and in
a faulty state [5]. The feature output information is used for

3Worldwide Harmonized Light-Duty Vehicles Test Procedure,
https://www.unece.org/fileadmin/DAM/trans/doc/2014/wp29/
ECE-TRANS-WP29-2014-027e.pdf

the learning model which means that the selection of features
directly influences the performance of the machine learning
model. Expertise and experiences of human system experts at
this stage are required as no universal algorithm for feature
selection exists. For example, a good and simple feature is the
percentage deviation of a measured value to its norm value.
Such a feature can be directly analyzed, e.g., by limit checking.
Although it is easy to define such a feature, it is challenging
to set the limits for checking. It is also to be expected that
these limits have to be adaptive in order to take account for
varying process states, e.g., system load.

For our model we define two different kinds of feature
selection methods and compare them against each other:
boundary feature and percentage feature. Since both methods
require template information (i.e., healthy signal information)
to process the features, all necessary data is stored during an
initialization phase and can be consequently accessed online
when the diagnosis system is operating. The feature selection
methods can be generalized for many other processes as well.
The first feature selection method is an extension of limit-
checking. A fixed-limit checking method or a moving-limit
checking method typically outputs an in-bound or out-of-
bound result and is too insufficient when aggregated into sets
to differentiate between different faults. The extended method
categorizes the difference between the real (i.e., measured)
signal value and the template value with respect to the template
value at the same time step into five groups, which point
out the value deviations and hence, allowing a finer quan-
tification. Potential outputs expressing the deviation are then
[−1,−0.5, 0, 0.5, 1].

As shown in Equation 3, the second selection method in-
volves the calculation of the error percentage of the measured
signal with respect to the template signal.

percentage =
real signal value− template value

template value
(3)

Using error percentages to depict the signal relationships
can be regarded as an extension of a limit-checking method
but with very fine-quantified boundaries. With finer quan-
tifications, the ability to tell differences between numbers
apart becomes better and this can help the machine learning
algorithm to classify data sets into their labels.

Prior to the calculation of the feature, for both methods, the
correct template has to be chosen. For this, the current driving
situation is to be determined and expressed by an acceleration
and velocity value, which are seen to be valid for a limited
time interval. Feature Extraction is as follows:

1) Extraction of the acceleration and the initial value of the
real velocity profile in the time frame of interest.

2) Selection of the velocity template which resembles the
real velocity profile the most.

3) Acquisition of the features by performing the designated
feature selection method on all the signals of interest
from the real measurements and the templates.

In our scenario with simplified driving cycles for the training
procedure these steps can be easily performed, however, work-
ing with velocity profiles such as the WLTP driving cycles
one needs to segment the driving cycle at run time in order to
provide the necessary parameters for the template selection.
This information must be frequently updated for the online-
diagnosis system to operate correctly.

D. Decision Tree Implementation

According to Figure 2 the decision tree is created from the
datasets after feature extraction. The “minparent” parameter is
set to 1 as the termination condition to ensure full growth of
the tree. The output decision tree is likely to be overfitted to
the observations. Overfitting occurs when the machine learning
model is adjusted too well to training data and therefore could
have worse predicting abilities. Two drawbacks arise because
of an overly-grown tree. One is the possibility that the accuracy
for predicting test data labels decreases; the other is that due
to the high number of branches and conditions, it causes a
lot of unnecessary efforts to implement for online diagnosis.
Pruning is used to trim the tree branches to an extent such
that the trade-off between branch number and accuracy of the
tree is reasonable for implementation.

Three performance indicators, namely accuracy, cross-
validation error, and resubstitution error, are presented in this
paper to compare the performance between different trees.
Accuracy is calculated from predicted labels of test data from
tree and test data labels. A higher accuracy implies that more
labels are correctly predicted from the tree and therefore
the tree is a more desired result. Cross-validation error is
obtained by bagging training data into ten groups, nine of
which are used to create a tree and the other one is used
as test data. The nine groups are selected randomly in every
iteration and there are in total ten iterations. Cross-validation
error is calculated by averaging misclassified labels in all ten
iterations. It provides an indication of how balanced the labels
in the training data are. Resubstitution error is calculated from
the mismatched labels between training data and predicted
labels from training data from tree. A low resubstitution error
represents a good ability of the tree with predicting training
data labels. With each prune the resubstitution error rises. A
low resubstitution error does not guarantee a good accuracy
of a tree. In many cases, overfitting may occur.

VI. EXAMPLES AND EVALUATION

We now demonstrate how the signal dependencies for a
system level online diagnosis are automatically extracted from
raw datasets, derived with the help of our fault-injection
framework, according to the procedure described in Section V.

A. Diagnostic Dependencies

Figure 3 shows the outcome of the machine learning al-
gorithm based on 62 training datasets. For the simulation we
used the percentage features. The fully grown tree is pruned
four times to decrease potential false classifications due to
overfitting. In the simplified scenario we assume that only one

fault occurs at a time and the potential faults are: failure of the
electric motor (label 1), failure of the generator (2), failure of
the battery (3), or ICE failure (4). The label (0) indicates that
no fault has occurred. The decision tree graphically illustrates
which signals have to be analyzed in order to include or
exclude particular faults during the decision process. As we
see from the applied predictors, at least two signals need to
be evaluated to conclude a fault. For instance, a battery failure
(label 3) is concluded after examining the ”motor current
feature” and the ”battery current feature”. Possibly, this fault
is indicated by evaluating just one feature, however, on system
level the decision includes multiple features and is generally
more precise and valuable.

Figure 4 indicates the predictor importance estimate for
the decision tree. The most significant predictors are x1 and
x2, which is in accordance with the top-level decisions of
the tree. It seems counterintuitive at first that the vehicle
speed (predictor x4) is not evaluated, however, it needs to
be considered that the speed information is already included
in the processing when a template is chosen. The estimate
gives insight into the importance of certain sensors and can
beneficially influence future modifications to a system, e.g.,
establish redundancy of particular sensors or discard others.

B. Comparison of Feature Selection Methods and Fault Types

Table I summarizes the characteristic values of several
simulation sets and allows a comparison between the two
feature selection methods and the different fault types:

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT SIMULATION SETS

Simulation Accuracy Cross Resubstitution Prune
(%) Validation Error Level

Error

A1 74.603 0.282 0.158 0
A2 73.016 0.286 0.256 5
B1 87.302 0.139 0.004 0
B2 87.302 0.135 0.068 4
C1 88.679 0.219 0 0
C2 90.566 0.245 0.063 2
D1 91.045 0.161 0 0
D2 86.567 0.163 0.085 4

A: Fault Diagnosis with templates 20 and boundary features.
B: Fault Diagnosis with templates 20 and percentage features.
C: Predictive Diagnosis with templates 20 and percentage
features.
D: Predictive Diagnosis with templates 10 and percentage
features.

Comparing the simulation sets A and B we conclude that
percentage features outperform boundary features in the fault
diagnosis, i.e., determining the root cause of a faulty system
behavior. This is due to the fact that percentage features can
describe the differences between healthy and faulty signals
in more detail. Simulation sets C and D show the algorithm
performance for a predictive diagnosis. In this scneario we
intend to predict the lifetime of a component when it shows

4 1 4 2 0 4

2 0 1 3

x1 < -0.955295

x1 < -1.0291 x2 < -0.691189

x5 < -0.770478 x6 < -0.999897 x2 < -53.2723 x2 < 88.4635

x2 < -0.50804 x6 < -1.00008

 x1 >= -0.955295

 x1 >= -1.0291 x2 >= -0.691189

 x5 >= -0.770478 x6 >= -0.999897 x2 >= -53.2723 x2 >= 88.4635

 x2 >= -0.50804 x6 >= -1.00008

Fig. 3. Decision tree of simulation B2 (Table I); predictor representation: x1: Motor current feature, x2: Generator current feature, x3: Engine torque feature,
x4: Vehicle speed feature, x5: Generator speed feature, x6: Battery current feature; label representation: 0: No faults, 1: Motor failure, 2: Generator failure,
3: Battery failure, 4: ICE failure

x1
: M

oto
r c

urre
nt f

eatu
re

x2
: G

enera
to

r c
urre

nt f
eatu

re

x3
: E

ngin
e to

rq
ue fe

atu
re

x4
: V

ehicl
e s

peed fe
atu

re

x5
: G

enera
to

r s
peed fe

atu
re

x6
: B

atte
ry

 c
urre

nt f
eatu

re

Predictors

0

0.01

0.02

0.03

E
s
ti
m

a
te

s

Fig. 4. Predictor importance estimates of simulation B2

a degrading performance over time by classifying its current
healthy status [10]. These two simulation sets use percentage
features and additionally compare the influence of having more
healthy raw datasets (templates) available by reducing the ve-
locity intervals to 10 km/h (templates 10; recall Section V-B).
For fault diagnosis with templates 20 and percentage features
an accuracy of 87.302% is achieved (Simulation B). The
low cross-validation error of 0.135 shows a good balance
of different labels in the training data. The resubstitution
error increases to 0.068 after four prunes, yet the accuracy
remaines the same. This tree can be utilized as a DAG for
fault diagnosis. As for predictive diagnosis, an accuracy of
90.566% was obtained using templates 20 and percentage
features (Simulation C). A cross-validation error of 0.245
shows a slight imbalance in training data, because healthy
labels were the majority among all labels. All simulations
using percentage features (B-D) show an accuracy of about
90% which is a good result considering the simplicity of
the selected features (expressing simple deviations of a signal
from its norm) and the little number of diagnostic decisions
necessary. Definitely, improved results can be achieved in the
future when advanced diagnostic features also handle trend
analyses of signals or take account of characteristic signal
patterns.

C. Distributed Fault Diagnosis Process

In order to establish an online diagnosis system, which can
be implemented on a real system, potentially on a distributed
architecture, we need to convert the decision tree into a DDAG
according to the diagnostic model introduced in Section II-C.
In our simplified example all diagnostic tasks include the two
steps feature extraction and feature evaluation. The result of
the conversion of the decision tree (Figure 3) into a DDAG is
shown in Figure 5. In the DDAG the labels indicate the faults
(and no fault situation) that are identified at the corresponding
processing steps.

F

SA

E

DB C

A

SC
SB SD

mAB

SB

[0,2,4]

[1,3]

[4]

[0,2]

Fig. 5. Diagnostic directed acyclic graph of simulation B2

Table II gives an overview of the diagnostic tasks and nec-
essary input signals. Whenever a feature is evaluated multiple
times in a row (e.g., x1 in Figure 3) it becomes one task
(compare with node A in Figure 5) since in our model, a
diagnostic task is not limited to one processing step, yet,
to the evaluation of one feature. To comply with real-time
environments, the dataset collection with labels for training,
feature extraction, decision tree generation, and pruning are
executed offline. The pruned decision tree is then introduced
as a DDAG into the real-time environment. In online diagnosis,
procedures include signal collection from sensors, determina-

TABLE II
DIAGNOSTIC TASKS AND SIGNALS

Node Task (feature Signal Measurement
gen. and eval.)

A Motor feature 1 SA current
B Generator feature 1 SB current
C Generator feature 2 SC speed
D Battery feature 1 SD current
E Generator feature 1 SB current
F Final fault decision

tion of the current driving situation, feature extraction, feature
processing according to scheduled DDAGs, and eventually
the conclusion of a label, which reveals the state of the
vehicle in the given time frame. These procedures are repeated
throughout the whole driving cycle and real world driving
situation, respectively.

A stepwise fault-inference process operating on system level
is qualified for complex real world systems. Especially when
the system to be diagnosed consists of multiple distributed
processing units, not all relevant data may be available for
the diagnosis at all times. With our proposed algorithm a
diagnostic model, which organizes the successive generation,
evaluation, and combination of the relevant information for an
online fault-diagnosis process, can be established.

VII. FUTURE WORK

In order to prepare the algorithm to also work with real
automotive data from project partners in the future, we intend
to refine our algorithms by extending both the HEV-model
and the according fault-injection possibilities to produce data
closer to reality. Besides, the diagnostic features applied so far
can be seen as extensions of limit checking. Since faults may
leave complex traces within signals, more sophisticated di-
agnostic features can improve the accuracy of our algorithms.
With a library of different feature extraction methods available,
an algorithm that automatically selects the best performing
features could further automate the design process. We also
intend to compare and validate our machine learning model
with related methods of the field of artificial intelligence. In
terms of time guarantees for the online fault-diagnosis process
a tool for timing analyses of all operations of the process is to
be established, in order to estimate their worst case execution
times.

VIII. CONCLUSION

In this paper, we motivate online diagnosis to be performed
on system level. Naturally, faults in a complex system can be
tracked down more precisely with more (sensor or process)
data taken into account for the diagnostic inference process.
We introduced a hybrid-electric vehicle model and an associ-
ated fault-injection framework. With the ability to simulate
the health status (e.g., failures or degrading performance)
of the vehicle components in different driving situations we
established a database and the applied machine learning al-
gorithm extracts signal interrelations and feature evaluation

estimates. The result of the algorithm, a decision tree, is
converted into a diagnostic directed acyclic graph. That way,
the obtained diagnostic model can be executed at run time on a
given physical infrastructure, e.g., at distributed computation
nodes of a hybrid-electric vehicle, thus realizing an online
diagnosis system operating on system level. Our automatic and
systematic approach relies less on human expert knowledge
and experiences regarding component interrelations and can
consequently help to reduce personnel costs and potential hu-
man conflicts. Simulations comparing different fault types and
feature selection methods show that the proposed algorithm
achieves an accuracy of over 90% (correct fault classifications)
with a very compact DDAG, that means, only few decisions
are necessary. Considering the high level of automation of
the approach and the relatively simple diagnostic features that
were applied this is a notable result. Yet, there is room for
improvements as diagnosis systems for safety-critical applica-
tions typically require a higher accuracy in terms of a correct
fault identification.

ACKNOWLEDGMENT

This work was supported by the DFG research grants
LO748/11-1 and OB384/5-1.

REFERENCES

[1] Leo Breiman. Classification and regression trees. Routledge, 2017.
[2] Mohand Arab Djeziri, Rochdi Merzouki, and Belkacem Ould Boua-

mama. Robust monitoring of an electric vehicle with structured and
unstructured uncertainties. IEEE transactions on vehicular technology,
58(9):4710–4719, 2009.

[3] Hong Guo, Jacob A Crossman, Yi Lu Murphey, and Mark Coleman.
Automotive signal diagnostics using wavelets and machine learning.
IEEE transactions on vehicular technology, 49(5):1650–1662, 2000.

[4] Humberto Henao, Gerard-Andre Capolino, Manes Fernandez-Cabanas,
Fiorenzo Filippetti, Claudio Bruzzese, Elias Strangas, Remus Pusca,
Jorge Estima, Martin Riera-Guasp, and Shahin Hedayati-Kia. Trends
in fault diagnosis for electrical machines: A review of diagnostic
techniques. IEEE industrial electronics magazine, 8(2):31–42, 2014.

[5] Rolf Isermann. Fault-diagnosis systems: an introduction from fault
detection to fault tolerance. Springer Science & Business Media, 2006.

[6] Seungbum Jo, Markus Lohrey, Damian Ludwig, Simon Meckel, Roman
Obermaisser, and Simon Plasger. An architecture for online-diagnosis
systems supporting compressed communication. In Digital System
Design (DSD), 2017 Euromicro Conference on, pages 62–69. IEEE,
2017.

[7] Jianhui Luo, Fang Tu, Mohammad Shafiul Azam, Krishna R Pattipati,
Peter K Willett, Liu Qiao, and Masayuki Kawamoto. Intelligent model-
based diagnostics for vehicle health management. In System Diagnosis
and Prognosis: Security and Condition Monitoring Issues III, volume
5107, pages 13–27. International Society for Optics and Photonics, 2003.

[8] Yi Lu Murphey, M Abul Masrur, ZhiHang Chen, and Baifang Zhang.
Model-based fault diagnosis in electric drives using machine learning.
IEEE/ASME Transactions On Mechatronics, 11(3):290–303, 2006.

[9] Roman Obermaisser, Rubaiyat Islam Sadat, and Fabian Weber. Active
diagnosis in distributed embedded systems based on the time-triggered
execution of semantic web queries. In Object/Component/Service-
Oriented Real-Time Distributed Computing (ISORC), 2014 IEEE 17th
International Symposium on, pages 222–229. IEEE, 2014.

[10] Rune Prytz, Slawomir Nowaczyk, Thorsteinn Rögnvaldsson, and Stefan
Byttner. Analysis of truck compressor failures based on logged vehicle
data. In Proceedings of the International Conference on Data Mining
(DMIN), page 1. The Steering Committee of The World Congress
in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2013.

[11] Raymond Reiter. A theory of diagnosis from first principles. Artificial
Intelligence, 32(1):57–95, 1987.

