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Abstract—Research on graph neural networks (GNNs) has
increasingly gained popularity recently. GNN is considered a
powerful tool for solving machine learning tasks that require
dealing with irregular topologies such as graph data. Meanwhile,
solving the scheduling problems for time-triggered systems has
been debated for a long time. Even though several algorithms
were proposed to solve this problem, none considered exploiting
GNN partially or wholly, solving time-triggered scheduling. In
this work, we propose an approach for dynamic adaptation
in time-triggered systems using GNN. We use GNNs to solve
scheduling problems for time-triggered systems by transforming
job allocation problems to link prediction tasks. The preliminary
results show that GNNs have a promising potential to perform
job allocation problems in time-triggered systems.

Keywords—Graph neural networks, link prediction, time-
triggered systems, scheduling

I. INTRODUCTION

Time-triggered systems are computer systems that execute
one or more sets of jobs based on predetermined schedules.
The implementation of time-triggered systems involves the
deployment of a global time base that drives a job dispatcher to
release jobs at predetermined points in time [1]. Time-triggered
systems can support adaptive systems behaviour by deploying
pre-computed schedules for relevant events at development
time. This adaptive behaviour can improve energy efficiency,
reliability, and context awareness. For example, information
about faults can help recovery by re-distributing application
services to the system’s remaining resources. The predictability
and fault tolerance of time-triggered systems has made its
utilization dominant in many safety-critical applications that
require their services to be maintained under all load and fault
assumptions to minimize risk for people, property, and the
environment [2, 3].

Scheduling is the process of efficient resource allocation of
jobs to ensure job completion within deadlines [4]. Scheduling
in time-triggered systems is mainly carried out offline. Sev-
eral approaches were proposed in prior works trying to find
feasible solutions to the scheduling problem utilizing genetic
algorithms (GA) [5], heuristic list schedule techniques [6] or
meta-scheduling techniques [7]. Time-triggered systems are
widely used in safety-critical applications, but achieving these
adaptivity requirements is restricted by the number of offline
pre-computed schedules. The resulting computed schedules are
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usually stored within an embedded device that performs a look-
up of a schedule triggered by context events. Generating sched-
ules for different context events using any of the previously
mentioned tools may lead to an exponential growth in the
number of computed schedules causing a state-space explosion
problem [8].

The fact that genetic scheduling algorithms require high
computation time makes their deployment during run time
inapplicable [5]. On the contrary, list scheduling techniques
are fast in computation, but their makespan results are inferior
compared to genetic algorithms [6]. A more efficient scheduling
technique is needed to overcome the traditional scheduling
algorithms’ limitations concerning storage spaces, makespans,
and computation time. The recent breakthrough in the artificial
intelligence field turned researchers’ efforts towards deploying
artificial neural networks (ANNs) to solve scheduling problems.
ANNs can provide the opportunity to learn and infer schedules
at runtime with short delays.

Graph neural networks have been recently utilized in solving
various scheduling problems for different applications such
as job shop scheduling [9, 10], multi-robot task scheduling
[11] and production scheduling [12]. Graph neural networks
are deep learning-based methods that operate on graphs. The
graphs are data structures that model a set of objects and
their relations [13]. Many learning tasks require dealing with
graph data due to their expressive power and ability to capture
rich relational interactions between graph elements. Graphs
can be used to denote systems from various areas, such as
social networks [14], physical systems [15] and protein-protein
interactions [16]. The unique non-euclidean topology of graphs
allows applying different types of machine learning tasks such
as node classification [17], link prediction [18, 19], and graph
classification [20].

This paper aims to deploy knowledge about graph neu-
ral networks to solve scheduling problems of time-triggered
systems by transforming the job allocation problem into a
link prediction task. A heterogeneous graph models a spe-
cific schedule, where a graph node represents a job, and
the relations/dependencies between different jobs or between
jobs and corresponding processors represent the graph links.
The scenario generator component of the AI-based scheduling
algorithm described in [21] is used to generate heterogeneous
graphs. The resulting heterogeneous graphs are the input dataset
to our model. We then use GNN to apply link prediction on the
heterogeneous graph datasets. The goal is to inspect whether
GNNs could successfully assign the jobs to their corresponding



processors and provide schedules similar to the ones generated
with the GA in the AI-based scheduling approach.

The remainder of this work is organized as follows. Section
II discusses the related work. Section III presents the system
model. The link prediction representation is presented in section
IV. Results of the experiments are described in section V. The
conclusion is discussed in section VI.

II. RELATED WORK

Graph neural networks have been recently employed in
many different fields. Lilapati W. et al. [22] introduced a
comprehensive overview of GNNs. They listed the possible
tasks that can be performed over different graph levels, such
as node-level tasks, which include node classification and
clustering; edge-level tasks, under which lies edge prediction
and classification; and graph-level tasks, which include graph
classification. Authors categorized the variants of graphs based
on the structure and the scale of graph data into directed,
heterogeneous, dynamic, and attributed graphs. These different
graph topologies enabled the real-world deployment of GNN
in more applications.

Alex F. et al. [16] harnessed the GNN knowledge in drug dis-
covery. They used GNNs to predict interfaces between proteins.
They proposed a scheme that can make accurate predictions
using either sequence information alone or in conjunction with
structure-based features. The resulting algorithm showed better
accuracy than the SVM approach [23].

Wenqi Fan et al. [24] utilized GNNs to carry out a social
recommender system, which can be realized from the GNN per-
spective as a link prediction task. Furthermore, they introduced
a novel GNN framework (GraphRec) for social recommenda-
tions. Results showed that their proposed method outperforms
other methods, such as DeepSoR [25] and GCMC+SN [26].

Moreover, Shiwen Wu et al. [27] carried out a comprehensive
review of the different contributions regarding GNN-based
recommender systems. They categorized the existing works into
user-item collaborative filtering, sequential recommendation,
social recommendation, and knowledge graph-based recom-
mendation. They argued that the proposed GNN-based recom-
mendation frameworks could be utilized for recommendation
tasks due to their representation of learning properties. In addi-
tion, they claimed that most of the data for the recommendation
tasks could be modelled as a graph structure.

Machine learning algorithms have been recently deployed
to tackle scheduling problems. For example, Carlos et al.
[21] developed an adaptive artificial intelligence quasi-static
scheduling approach for time-triggered scheduling problems.
The model is trained offline to predict job priorities used to
generate correct schedules. The priority of jobs is predicted by
an AI-based model trained offline. At run time, adaptation is
fulfilled by generating a new schedule for any new scenario.
Results showed that while their approach was still far from
the genetic algorithm (GA), it was superior to list heuristics
in terms of makespan. However, using GA-based schedulers is
not recommended for real-time applications due to their long
computation time.

Chunmeng Z. et al. [28] proposed a deep reinforced learning-
based schedule for time-triggered ethernet (DRLS). The DRL-
based scheduling algorithm includes two phases. First, agents
are trained using specific or random network topologies in an
offline training phase. Then an online inference phase follows,
where the trained agent computes the time-triggered schedule
for the specific network topology and the flow requirements
incrementally. Results showed that DRLS could adapt to spe-
cific network topologies and performs better than traditional
heuristic-based methods.

All recent contributions deployed GNN for scheduling tech-
niques to find feasible scheduling solutions offline. In contrast,
we aim to use GNN to perform job assignments using link
prediction. In this work, we apply the link prediction algorithm
to a heterogeneous graph consisting of multiple edge and
node categories. Our goal was to predict the edge category
representing the job allocation. We do not predict the entire
schedule due to safety considerations since a single error can
cause the entire schedule to be invalid. Instead, we restrict
the problem to predicting the job assignment to investigate the
prospect of getting better makespans for a list scheduler. The
goal of applying link prediction is assigning the jobs to their
corresponding processors.

III. SYSTEM MODEL

Scheduling problems can be abstractly defined as follows:
given a set of jobs J := {J1, ...., Jn}, which have to be
processed on a set of processors P := {P1, ....., Pm}, the goal
is to assign each job a corresponding processor depending on
predefined constraints such as [29]:

1) Each processor can handle one job at a time.
2) Each job can only be allocated to one processor at any

time.
The time-triggered scheduling problem can be represented by

application and platform models. The application model, shown
in Figure 1, also known as the task graph, is a directed acyclic
graph carrying information about the jobs and messages. The
task graph can be modeled as G = (V,E, w, c), where V are
graph nodes representing the jobs, E represents the connection
between jobs, The computation cost w is a positive weight
associated with a given node n ∈ V . The communication cost
c is a non-negative weight associated with members of the
edge E. The platform model, shown in Figure 2, is a separate
undirected graph that includes the hardware information, such
as switches/routers, end systems/processors and the intercon-
nection pattern between them.

Traditional scheduling approaches aim to deploy knowledge
about application and platform models to find a solution for the
scheduling problem. The scheduling approach should maximize
a fitness function, including small makespan and computation
periods. The current techniques tend to find solutions to the job
allocation problem offline. Different schedules are generated
at development time, each corresponding to a certain context
event. Different techniques can generate schedules, for exam-
ple, heuristic scheduling techniques, genetic algorithms (GA),
or deploying artificial neural networks, which is used in our
case. We use the resulting schedules to generate heterogeneous



Figure 1. Shows the application model for ten jobs

Figure 2. Platform model conformed by switches (sw) and end systems (es).

graphs, which are the inputs to our Graph neural network
(GNN) link prediction model.

This work aims to motivate the idea of solving scheduling
problems at run time. At runtime, application and platform
models represent heterogeneous graphs with missing links
between jobs and processors. The GNN link prediction model
is deployed to find the missing links that correspond to the
solution to the scheduling problem. Figure 3 shows two flow
charts, which illustrate the offline and runtime processes. In
the offline process a scheduling tool is used to provide the
require solutions for the different scenarios. The solutions
together with the input application and platform models are
transformed into a heterogeneous graph using the PyTorch
Geometric library. Before inserting the graphs into the training
model links need to be erased from the graphs depending on
the prediction objective. For the runtime scheduling the models
are transformed into a graph to subsequently insert it into the
model for the link prediction. A schedule reconstructor block
ensures that the schedule is valid.

IV. LINK PREDICTION REPRESENTATION

This section introduces the technique for transforming the
job allocation problem into link prediction. The goal of link
prediction is to predict the existence of a connection (edge)
between two nodes. GNNs can learn graph structures and node
features, which make them superior to traditional methods [30]
that rely on calculating neighborhood overlap between two
nodes so that the node similarity score acts as the likelihood
of a link existing between these nodes.

Figure 3. Flow diagrams showing the process of job allocation for the offline
training (left diagram) and the runtime scheduling (Right diagram).

The previous knowledge about the potential application of
GNNs motivated us towards using link prediction for schedul-
ing. In our experiments, we used one platform model and
different application models consisting of 10 jobs. We used
the scenario generator block described in [21] to generate
the input data. The scheduler block is then used to generate
feasible schedules for each input data fulfilling the pre-defined
constraints and minimizing the makespans.

The solution is recorded as a JSON file specifying which
processor each job should run on. An example of the job
allocation to different processors is shown in the following
table:

Table I
JOBS ALLOCATION TO DIFFERENT PROCESSORS

Job nodes 0 1 2 3 4 5 6 7 8 9
Processor nodes 4es 5es 4es 5es 2es 5es 5es 2es 2es 4es

Based on the solution files and using the PyTorch geometric
library (PYG), we combine the different application models
with the platform models to represent the solutions of the
scheduling problems by constructing multiple heterogeneous
graphs. Each heterogeneous graph represents the solution for a
specific application model.

The heterogeneous graph, shown in Figure 4 consists of three
sets of nodes V = V1∪V2∪V3. V1 represents the job set marked
by red in the graph, V2 represents the switches marked by the
blue color, and V3 represents the processors having the green
color in the graph. The edges satisfy specific constraints based
on the type of nodes they connect. The undirected dotted lines
join different jobs with different processors meaning this job is
running on that specific processor. For example, job (4) should
run on processor number (5) based on the scheduling solution.

The heterogeneous graphs are used as input to our GNN
link prediction model so that the model can learn different
node embeddings. The objective is that after training the model,
it should be able to predict whether an edge exists between



Figure 4. Heterogeneous graph representing a solution to a scheduling problem
for an application model of 10 jobs.

a specific job node and a processor node. Edges that need
to be predicted whether they exist are called positive edges.
Meanwhile, the remaining processor nodes not edge-connected
to this job node will have artificial links created during the
training process, called non-existent or negative edges [18, 31].

The trained model should be able to rank the positive edges
higher than the negative ones to make a distinction between
them. During the prediction phase (testing), a certain number
of edges joining the jobs with their corresponding processors
(dotted edges) is masked and the prediction is determined based
on the propability computed by the inference model.

V. EXPERIMENTS AND RESULTS

In this section, we decribe the experimental procedures
together with the results. The experiments were carried out
in the OMNI cluster of the University of Siegen. The dataset
for this experiment consists of 40,000 heterogeneous graphs
representing the solutions for the scheduling problem from the
GA for each of the 10-job and 40-job application models. For
model training, 39,000 heterogeneous graphs were used wheras
the remaining 1000 are used to evalute the model performance.
Data prepartion procedure is shown in Figure 5. From the
application models node and edge features were extracted:

• Node features
– Execution time: Time needed for the job to be exe-

cuted.
– Node degree: Number of edges adjacent to the node.
– Clustering coefficient: It is a measure that defines how

closely connected the nodes in a graph are.
– Node centrality: It measures the importance of a node

in the overall graph based on its location.
• Edge features

– Message size
The resulting heterogeneous graphs from the data processs-

ing procedure are used as inputs for the GNN-Link prediction
model for training and testing purposes. For the training model,
we defined a function to delete a specific number of edges
between jobs and processors.

The 1000 graphs used for prediction to evaluate the model
performance were split into three groups depending on the

Figure 5. Data processing steps

number of erased/predicted links. In the first group, only one
link per graph was deleted. In the second group, half of the
links were deleted. Finally, in the last group, all the links were
deleted. In every group, the final goal is to predict the missing
links.

The accuracy of training, testing and prediction is defined
based on the number of the correct positive edges the model
can output. The predicted results are compared with the original
deleted value to get the accuracy of the prediction of the model.
The results for training and testing the job datasets are presented
in Table II.

Table II
PREDICTION ACCURACY OF DIFFERENT MODELS FOR THE TWO DATASETS

Dataset Predicted links Accuracy using different models (%)
1 2 3 4

10 jobs
One link 36.06 32.33 31.33 31
Half links 34.33 32.93 32.28 32.66
All links 31.9 30.1 28.66 29

40 jobs
One link 41 35 33 34
Half links 35.53 34.76 32.6 32.82
All links 35.05 35.82 32.51 31.9

We recorded the prediction accuracy of 4 different models,
each of them with different training parameters. The prediction
accuracy reflects the results of the model operation. The more
edges we erase during the training process, thus more edges to
be predicted, the less accurate the final prediction result will
be. The highest recorded prediction accuracy was 41%. There
is a difference in the accuracy from the 10 and the 40 jobs
model. In the 40 jobs model, there is more information from



which the GNN can learn due to the size of the graph, which
leads to better prediction accuracy.

VI. CONCLUSION

This work investigates the applicability of deploying GNNs
to solve scheduling problems. It expresses the scheduling
problem as a link prediction task, where the goal is to map each
job with its corresponding processor by learning the behaviour
of the genetic algorithm. We used heterogeneous graph rep-
resentations to model the scheduling solutions obtained from
the genetic algorithm to prove the capability of our assump-
tion deploying the GNN link prediction algorithm in solving
scheduling problems. Several factors can affect the obtained
accuracy, one of them being the relatively small amount of data
used during this experiment, unlike other datasets typically used
to apply link prediction with GNNs such as in [32], where all
the extracted data comes from an enourmous single graph. Al-
though the accuracy of the predictions could be better, it should
be kept in mind that these predictions can also lead to correct
solutions, i.e. makespans that fulfil the intended deadlines. The
results show the potential of applying GNN-Link prediction
in solving scheduling problems. Future work is expected to
improve the overall accuracy. Furthermore, applying GNN-link
prediction would enable finding feasible scheduling solutions
at run-time, thus saving storage space usually occupied by the
pre-computed schedules at the development time resulting from
the traditional time-triggered scheduling techniques.

REFERENCES

[1] M. J. Pont, Patterns for time-triggered embedded systems.
TTE System, Ltd, 2008.

[2] F. Heilmann, A. Syed, and G. Fohler, “Mode-changes
in cots time-triggered network hardware without online
reconfiguration,” ACM SIGBED Review, vol. 13, no. 4,
pp. 55–60, 2016.

[3] R. Obermaisser, H. Ahmadian, A. Maleki, Y. Bebawy,
A. Lenz, and B. Sorkhpour, “Adaptive time-triggered
multi-core architecture,” Designs, vol. 3, no. 1, p. 7, 2019.

[4] T. R. Ramanan, R. Sridharan, K. S. Shashikant, and A. N.
Haq, “An artificial neural network based heuristic for
flow shop scheduling problems,” Journal of Intelligent
Manufacturing, vol. 22, no. 2, pp. 279–288, 2011.

[5] M. Pahlevan and R. Obermaisser, “Genetic algorithm
for scheduling time-triggered traffic in time-sensitive net-
works,” in 2018 IEEE 23rd international conference on
emerging technologies and factory automation (ETFA),
vol. 1. IEEE, 2018, pp. 337–344.

[6] M. Pahlevan, N. Tabassam, and R. Obermaisser, “Heuris-
tic list scheduler for time triggered traffic in time sensitive
networks,” ACM Sigbed Review, vol. 16, no. 1, pp. 15–20,
2019.

[7] B. Sorkhpour, A. Murshed, and R. Obermaisser, “Meta-
scheduling techniques for energy-efficient robust and
adaptive time-triggered systems,” in 2017 IEEE 4th In-
ternational Conference on Knowledge-Based Engineering
and Innovation (KBEI). IEEE, 2017, pp. 0143–0150.

[8] E. M. Clarke, W. Klieber, M. Nováček, and P. Zu-
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