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Abstract—Over the years, Network-on-Chip (NoC) has under-
gone a rapid evolution which urges the performance of NoCs
to be analyzed thoroughly. Several NoC solutions exist, but the
performance of these NoCs are tied to application requirements.
Therefore, it has become practical to extend existing NoCs to
satisfy particular application requirements. The LISNoC is one
such NoCs that is open-source and provides an easily adaptable
implementation to extend its features to satisfy different applica-
tion requirements. In order to satisfy several key features such
as the wormhole switching, source-based routing, support for
a virtual channel and an Advanced eXtensible Interface (AXI)
based network interface, the LISNoC is improved. Mainly, this
work extends the LISNoC to support source-based routing and
equips the LISNoC with a new AXI-based network interface.

Index Terms—Network on chip, LINoC, Network interface,
Source base routing

I. INTRODUCTION

Nowadays, there is a trend in chip design where components
with millions of transistors are integrated and made to operate
efficiently. The System-on-chip (SoC) designs implement such
an integrated solution for various complex applications. One
of the essential considerations in SoC design is the communi-
cation architecture between different components. Most of the
communication architectures in current SoCs are bus-based.
However, the bus architecture has its inherent limitations, and
these include large load per data bus line, long delay for
data transfer, large energy consumption, and low bandwidth
[8]. In addition, latency, noise, power consumption, signal
integrity, and synchronization are now seriously considered
issues in SoC design. As a result, Networkon-Chip (NoC)
has been proposed in [7] to exchange messages between
communicating components within an SoC. NoCs implement
a high-performance communication infrastructure and is a
means for integrating many IP cores for SoC implementation.
In addition, the NoC paradigm uses a routerbased network
for packet-switched communication between on-chip cores,
and it provides the possibility for reusability since the com-
munication infrastructure can be easily integrated to a new
product. The primary goal of the communication centric design
and NoC paradigm is to reduce manufacturing difficulties,
transfer delay, wiring issues, power consumption and reliabil-
ity to enhance the design productivity and performance [17],
[23], [24]. Also, three critical challenges for NoC are power,

latency, and CAD compatibility [16]. Several key features
are considered when designing an NoC to overcome these
challenges. These features include the switching technique,
routing algorithm, support for virtual channels, and on-chip
interconnection architecture.

Several NoC switching techniques exist, such as store-
andforward, virtual cut-through, and wormhole switching [20].
The wormhole switching has proven desirable due to its low
latency, implementation simplicity, and performance for a
relatively low traffic workload [15].

Generally, routing algorithms can be categorized into three
main groups: deterministic, Adaptive, and Stochastic. In terms
of implementation, routing algorithms can be implemented
by two different techniques, such as source-based routing
and distributed routing [20]. Source-based routing has shown
to minimize congestion on links and reduce packet delay.
In addition, the inclusion of virtual channels in an NoC
design provides a way to avoid deadlock and optimize the
bandwidth of physical channels. Several protocols for On-chip
interconnection exists, such as IBM’s core connect [9], Silicore
corporation WISHBONE [19], and the Advanced eXtensible
Interface (AXI) protocol [21] . The AXI is considered in
this work due to it’s widespread use, simplicity, and wide
compatibility features.

There are currently several NoCs such as LISNoC [5],
ANOC [3], Nostrum [12], GALS NoC [6], Hermes [13],
AEthereal [2], and SPIN [1]. None of these NoC fulfils
the following collective requirements; open source, worm-
hole switching, source-based routing, virtual channel support,
support for mesh topology, and AXI interface. However,
among all the NoCs mentioned above, only AEthreal supports
source-based routing. Nevertheless, the LISNoC is open source
and provides an easily adaptable implementation. This work,
therefore, uses the LISNoC and contributes the following to
satisfy the NoC challenges above:

« Extends the LISNoC to support source-based routing in

which the packet format is also modified.

o Extends the LISNoC with an Advanced eXtensible Inter-

face (AXI) based network interface.

AXT protocol provides a point to point interconnection to
avoid bus sharing and therefore allow higher bandwidth
and lower latency.



The remainder of this paper is organized as follows. Section
II discusses the related work, and section III describes the
NoC. Section IV discusses the extension of LISNoC . Section
V discusses the experimental setup and results , and finally,
section VI concludes the paper.

II. RELATED WORK

The LISNoC is introduced in [5], and it uses wormhole
packet switching for flit transmission within the NoC. The
LISNoC’s operation has been used three flow control signals:
flit, valid, and ready. It supports virtual channels, and virtual
channels are defined as flow control signals. The LISNoC,
on the other hand, only supports Mesh topology and lacks a
network interface. As a result, we extended the LISNoC with
source-based routing and developed and Network Interface
(NI) that used AXI to interconnect the processing elements
with the NL

The work carried out in [3] has proposed an Asyn-
chronous NOC architecture that combines Quality of Service
(ANOC) and Transaction-Level Modeling. The data transmis-
sion through the network uses the wormhole packet switching
technique. In addition, it uses virtual channels to increase
efficiency and reduces latency for prioritised packets. ANOC
supports the 2D mesh network, and each node is connected
to a network interface that contains a Globally asynchronous
locally synchronous (GALS) interface to perform synchronisa-
tion between the synchronous and asynchronous domains. In
contrast, our design relies on source-based routing to choose
the path to a destination, ensuring minimal congestion and low
packet latency. In addition, our design provides an AXI-based
network interface connection.

In [13], the authors reviewed the state of the art in Network-
on-Chip. An infrastrure called Hermes is described, that im-
plements packet switching, mesh topology, and related inter-
connection architectures. Herme’s main component is a switch
with five bidirectional ports that is linked to four other switches
and a local IP core. Input queuing is used by the switch, which
uses an XY routing algorithm. The primary goal of the design
was to create a small size switch. The design validation of the
Hermes switch and the network-on-chip is presented in the
paper. In contrast , we use source-based routing to ensure low
packet latency and minimal congestion. In addition, unlike the
Hermes NoC our proposed design supports the use of a virtual
channel that can be used to minimized the latency in the NoC.

The GALS NoC architectures is introduced in [6]. To solve
the clock distribution problem in GALS NoC, asynchronous
routers are linked to synchronous blocks. In this architecture,
the routing method is wormhole packet switching with an
XY routing algorithm. Mesh topology is supported by GALS
NoC. Unlike the GALS NoC, our design selects the best
path to the destination based on predefined schedule using
source based routing algorithm, ensuring conflict of messages
and reduced the congestion and the delay when transmitting
messages withing the NoC.

The AEthereal NOC architecture is introduced in [2]. To
reduce buffering costs, data is buffered using the worm-

hole switching technique. Virtual channel support is used
to improve efficiency and ensure low latency and minimum
bandwidth. Mesh topology is supported by AEthereal. The
AEthereal includes a Network Interface (NI), which divides
the system into a fixed kernel and variable shells. Each NI
shell converts read and write transactions from a specific IP
protocol. There is no AXI interface linked to NI Instead,
it employs a Multi-layer AHB (ML-AHB) interconnection
architecture, which allows for parallel access between multiple
masters and slaves, increasing overall bus bandwidth and
flexibility in the system architecture.

SPIN (Scalable Programmable Interconnection Network)
NOC architecture [1] is introduced by Adriahantenaina et
al. Two on-chip communication templates are examined and
compared in this paper, based on bus and NoC approaches.
In SPIN, packets are forwarded as soon as a router receives
their headers, which is a wormhole switching technique. SPIN
has adaptive and distributed routing, and SPIN supports the
fat-tree topology. A tree structure holds routers on nodes and
terminals on leaves, except that every node contains identical
fathers. RSPIN router is the basic building block of a SPIN
network, containing eight ports, each with two input and
output channels.

TABLE I
COMPARATIVE VIEW FOR DIFFERENT NETWORK ON CHIPS

NoCs Switching Routing Virtual Topology Network
Techniques  Algorithm Channel Interface
LISNoC Wormhole Dimension | Yes Mesh NA
order
ANoC Wormhole Dimension | Yes Mesh Contains
order GALS
interface
Hermes Wormhole Dimension No Mesh NA
order
GALS Wormbhole XY Basedon  Mesh No
NoC priority
scheduling
AEthereal | Wormhole Source Yes Mesh AMBA
based High
speed
bus
SPIN Wormhole Adaptive No Fat-tree No
and
distributed
Extended | Wormhole Source Yes Mesh, Yes
| LISNoC _ based ~Torus

III. NETWORK ON CHIP

Network-on-Chip (NoC) is a network-based communication
system that is built on an integrated circuit, such as the System-
on-Chip. Figure 1 depicts an example of a NoC based MPSoC.
It is made up of several components such as routers, links, Pro-
cessing ELements (PEs), and storage elements such as memory
blocks [20]. The Network Interfaces connect all of the IPs to



network adapters (NIs). By enabling PEs, communication via
the NoC is achieved. These PEs send and receive packets over
a network of switches that are linked together by physical links
or channels. Links are typically made up of two uniderectional,
point to point buses that run in opposite directions.
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Fig. 1. NoC based MPSoC

In NoC, data packet transmission takes place between
source PEs and sink PEs. Depending on the router’s decision,
data packet transmission is forwarded on the network step by
step. The router has switches and buffers, and the packet is first
received and stored in the input buffer. Flits are temporarily
stored in input/output buffers. The output port allocator selects
the output port for each flit/packet. The physical connection is
made by the switch via a link from the input port to the output
port and the control logic is in charge of overall synchro-
nization. Routers and switches serve as network connectivity
devices.

IV. LISNoC EXTENSION
A. LISNoC

LISNoC is an open source Network-on-Chip implemented
in Verilog mainly used for academic purpose [4]. The main
features of LISNoC include support for a virtual channel,
flexible router configuration, wormhole routing and strict or-
dering, and round-robin arbitration for link multiplexing [5].
The LISNoC flow control consists of three signals, namely,
Flit, Valid, and Ready signal. The transfer of flits within
the LISNoC occurs when the valid and ready signals are
high during a clock edge. Virtual channels are represented
by the flow control signals in the LISNoC. Data is transmitted
as messages which are split into packets. These packets are
divided into flow control units (flits) and physical units (phits).
Almost all NoCs follow packet-based communication. Data
packets have a header portion where all the information
regarding the destination processing elements is stated. The
amount of a packet transmitted in one clock is called the
flit. Wormhole routing is used for packet routing. Wormhole
routing does not store any packet. Frames are forwarded to the

correct port based on the information contained in the head
flit.

B. Architecture of Extended LISNoC

The LISNoC is extended with an AXI capable network
interface and source-based routing capability. Figure 2, shows
the detailed design of the NI, which stores message into the
register unit and sends it to the destination address. The NI is
designed as a bridge between a core and the NoC switching
fabric. The NI is used to connect the PEs to the NoC. The NI
is responsible for packetizing and depacketizing the messages
from the PEs.

In Figure 2, the wrapper is the fundamental component for
different PEs. Many on-chip networks may not be developed
based on the IP cores master interface, a slave wrapper
is required to communicate between the IP core, and its
associated router [22], [11]. Communications occur via a
transactional protocol, which utilizes the master interface of
IP core to transmit read and write commands at an address.
A slave module that receives those data executes them and
may reply with a response message including the status of the
operations [10], [4]. As shown in Figure 2, AXI4 Full slave
interface is used as a wrapper that allows burst particular mode
transactions. AXI4 Lite is not used as it allows only 1 data
transfer per transaction. The advantage of burst transfers is that
the bandwidth is employed as effectively as possible since the
initial address is only sent with some information regarding
the burst [18].

The Register Unit (RU) in the block diagram illustrates
the Memory Map in NI It consists of 7 Dual Port RAMs.
This register unit aims to store Tx (Transmit) message and
NoC configuration information(e.g. Traffic ID, a Destination
address, Number of flits) into the memory from the host
side. It also stores the Rx (receive) messages and the status
information(e.g. Source busy, Sink busy) coming from the
receiver. The Trigger FSM is a state machine responsible for
controlling the trigger signal to inject messages into the net-
work. The Configuration FSM is a state machine responsible
for configuring the NoC events on different memory location.
The status Update block receives data from Multiplexer and
passes it to the status register memory location. The Source
FSM implements a state machine used to transfer the des-
tination address and messages to the NoC. It also performs
the packetization of the message. The Sink FSM receives
messages from the NoC and performs depacketization.

V. EXPERIMENTAL SETUP AND RESULTS

To evaluate the extended LISNoC implementation, we have
performed four sets of experiments with a different number of
hops and flit sizes. The experiment begins with a 2x2 mesh
network for the NoC. One virtual channel is configured, and
the system is fed with a 100 MHz clock. Different flit sizes
8, 16, 24, 32, 40, 48 were taken into account. A message
source and sink are connected to different routers with two
hops separating them. The setup then utilises a Global Time
Base (GTB) implementation to measure the end-to-end latency
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Fig. 2. Architecture of Extended LISNoC

of messages from a source to sink. After which, the experiment
is repeated for a 3x3, 4x4, and 5x5 mesh network. The results
of the experiment are shown in Table II. Table II shows the
impact of the flit sizes on latency. It captures the number
of clock cycles required to process the stated hops. A plot
of average latency against flit size is shown in figure 3. The
results show the existence of a linear relationship between the
flit sizes and average latency. It observed that the extended
LISNoC for a two-hop configuration needs 13.5 clock cycles
to process a flit size of 8.

TABLE II
EXPERIMENT RESULTS
Number Latency Latency Latency [ns] | Latency [ns]
of Flits [ns] (clock | [ns] (clock | (clock cycles) | (clock cycles)
cycles)2x2 cycles) 3x3 | 4x4 mesh (4 | 5x5 mesh (5
mesh (2 Hops) | mesh (3 | Hops) Hops)
Hops)
8 135 (13.5) 165 (16.5) 195 (19.5) 225 (25.5)
16 215 (21.5) 245 (24.5) 275 (27.5) 305 (30.5)
24 295 (29.5) 325(32.5) 355 (35.5) 385 (38.5)
32 375(37.5) 405 (40.5) 435(43.5) 465 (46.5)
40 455 (45.5) 485 (48.5) 515(51.5) 545 (54.5)
48 535 (54.5) 565 (56.5) 595 (59.5) 625 (62.5)
56 615 (61.5) 645 (64.5) 675 (67.5) 705 (70.5)
64 695(69.5) 725 (72.5) 755 (75.5) 785 (78.5)
72 775 (71.5) 805 (80.5) 835 (83.5) 865 (86.5)

VI. CONCLUSION

This work extended the LISNoC with an AXI-based net-
work interface and a source-based routing algorithm. A new
packet format was defined for the LISNoC to realise the
source-based routing scheme. The results of the extended LIS-
NoC show a linear relationship between the average latencies
and the increment in flit sizes. For a 2x2 mesh network, 13.5
clock cycles was required to transmit a flit size of 8. It is
planned to reduce the number of clock cycles required for
each hop to transmit messages and extends the LISNoC with
adaptive features and time triggered systems for safety relevant
application in future works.
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