
Incremental, Distributed and Concurrent Scheduling in
Systems-of-Systems with Real-Time Requirements

R. Obermaisser, A. Murshed
University of Siegen

Abstract—Systems-of-Systems (SoS) are large-scale networked
embedded systems that are characterized by operational and
managerial independence of constituent systems, geographical
distribution, emergent behavior and evolutionary development
processes. This paper introduces a conceptual model and a
scheduling algorithm for supporting real-time requirements in
SoS. Real-time support is essential in many safety-relevant
application areas such medical, military and industrial SoS. The
search for a feasible schedule is computed incrementally upon
the introduction of new applications in the SoS. The distributed
computation of the schedule using the different constituent
systems considers the lack of global knowledge and control in the
SoS, while also reducing the overall scheduling time. Concurrent
scheduling activities are supported to deal with the uncoordinated
and possibly simultaneous introduction of multiple applications.

The paper introduces a high-level scheduling algorithm for
the SoS as well as a low-level scheduling problem for individual
constituent systems. The incremental scheduling problem for
the constituent systems is formulated using IBM CPLEX. An
experimental evaluation with automatically generated examples
demonstrates the feasibility of the proposed solution.

I. INTRODUCTION

The field of embedded systems is faced with the trend
of an increasing interconnection of independently developed
embedded systems to each other and to the cloud. The result-
ing Systems-of-Systems (SoSs) are networked together for a
period of time to achieve a certain higher goal [1]. Examples
of SoSs include smart cities [2], intelligent factories [3] and
integrated healthcare systems [4].

SoSs are characterized by operational and managerial in-
dependence of constituent systems, geographical distribu-
tion, emergent behavior and evolutionary development pro-
cesses [5]. In addition, many SoSs depend on support for
stringent real-time requirements for time-critical application
services. Examples are medical monitoring and telemedicine
in healthcare systems. Likewise, real-time requirements are
imposed by closed-loop control and remote interactions with
intelligent factories for industry 4.0.

Real-time support in SoSs is an open research challenge
due to the lack of central control as well as the evolving
and dynamic nature of the interactions between the constituent
systems. In monolithic systems, the dynamic introduction of
new applications is performed using schedulability tests in
order to ensure that accepted applications meet their real-time
requirements and new applications do not affect existing ones.
Previous work includes different types of admission control
algorithms to determine whether a new application can be

accepted based on the quality-of-service requirements [6], [7],
[8].

This paper proposes an SoS architecture with support for
real-time requirements based on managed traffic and dynamic
configuration. Each constituent system is equipped with a
Constituent System Manager (CSM), which not only config-
ures the local communication networks within the constituent
systems but also interacts with the CSMs of other constituent
systems and the backbone infrastructure of the SoS to establish
resource reservations.

We formulate an incremental, distributed and concurrent
scheduling problem for the CSMs. The computed schedules
lead to resource reservations for time-triggered communication
and computational activities.

The remainder of the paper is structured as follows. Sec-
tion II presents the conceptual model of the SoS. The in-
cremental, distributed and concurrent scheduling is discussed
in Section III. Section IV presents the Mixed Integer Linear
Programming (MILP) scheduling problem. The experimental
evaluation is discussed in Section V. The paper finishes with
the conclusion in Section VI.

II. CONCEPTUAL MODEL OF SOS

This section describes the SoS from logical and physical
viewpoints. The introduced structural models are the basis for
the subsequent formulation of the dynamic scheduling and
allocation problem.

The overall conceptual model of the SoS is depicted in
Figure 1. The SoS is comprised of constituent systems, where
each constituent system is a distributed embedded systems,
which is under the control of a given organization. Each con-
stituent system consists of endsystems that are interconnected
by real-time networks. Networks can include communication
networks with different protocols and topologies (e.g., multi-
star topology as depicted in Figure 1).

The interconnection of constituent systems occurs using a
backbone communication infrastructures consisting of network
domains. In analogy to the constituent systems, each network
domain is within the responsibility of an organization that
controls the resource allocations and their use by application
subsystems. Technically, this control is realized by manage-
ment services named Network Management System (NMS) of
the network domains. The NMS configures the routers in the
network domain, while also coordinating with other network
domains and constituent systems.

IDM

 Constituent
System

Constituent
System

Router

Network Domain

Routers

Routers
Routers

Routers

Network Domain

Routers

RoutersRouters

RouterES

ES

ES

ES

ES

GW

ES

ES

ES

ES

ES

GW

Router

ES

Router

SO

ES

ES ES

ES

Constituent
System

Router

Physical Viewpoint (Platform) Logical Viewpoint (Applications)

Scheduling
 and

Allocation

CSM NMS NMS

CSM CSM

Constituent
System

CSM

RouterES

Router

SO

ES

ES ES

Application

Subsystem 0Subsystem 1

Subsystem 3

Subsystem 2

Job 1/4

Job 1/3

Job 1/2

Job 1/1

Job 1/5

Job 1/0

Job 0/4
Job 0/3

Job 0/1 Job 0/2Job 0/5

Job 0/0

Job 2/5

Job 2/4

Job 2/3

Job 2/2 Job 2/1

Job 2/0

Job 3/4

Job 3/3

Job 3/2

Job 3/5

Job 3/1

Job 3/0

Fig. 1: Physical Viewpoint of the SoS with Constituent Systems, Constituent System Managers (CSM), End-Systems (ES) and
Network Management Systems (NMS) and Logical Viewpoint with Applications, Subsystems, Jobs and Messages (Arrows)

Likewise, each constituent systems contains management
services named Constituent System Manager (CSM). The
CSM performs the local configuration of the endsystems
and networks within the constituent system. In addition, the
CSM is responsible for the coordination with other constituent
systems and network domains.

From a logical point of view, the SoS consists of applica-
tions, each of which is a hierarchical Directed Acyclic Graph
(DAG) with subsystems and services. The messages between
subsystems and services represent the dependencies in the
DAG. As an example, consider a medical application for health
monitoring and patient care. This application involves different
subsystems with respective services. A constituent system ’pa-
tient home’ hosts a subsystem ’health monitoring’ with local
services (e.g., sensors, user interfaces). A constituent system
’hospital’ can provide a subsystem ’health alarm’ including
local services for health records, the analysis of sensory data
and the issuing of emergency treatment. A constituent system
’caregiver’ would offer a subsystem ’emergency response’
with services for remote interaction with patients.

From this example, we see the dynamic nature, large-scale,
heterogeneity and lack of central control. Numerous of these
medical applications will run in parallel for different patients,
while sharing the infrastructure (e.g., network domains) and
the constituent systems (e.g., hospitals, caregivers). In addi-
tion, other types of applications (e.g., energy management)
will be active at the same time. The SoS is highly dynamic,
e.g., when new patients are integrated into the system. The

resource allocation also involves the coordination between
different organizations (e.g., providers of network domain,
hospitals, patients).

While the discovery and peering of services is addressed
in previous work (e.g., service-oriented architectures [9], IoT-
A [10], FIWARE IoT Discovery [11]), the end-to-end resource
allocation and scheduling for SoS involving real-time, relia-
bility and safety requirements is an open research problem.

In this paper, we provide a solution to this end-to-end
resource allocation and scheduling based on the assumption
of time-triggered protocols within the constituent systems and
the network domains. This assumption is justified given the
widespread use of time-triggered protocols in safety-relevant
embedded systems (e.g., TTP in railway, TTEthernet in avion-
ics, FlexRay in automotive) and the ongoing standardization
activities for IEEE 802.1 [12], which introduces scheduled
traffic based on time-triggered communication plans, while
also offering run-time configurability and management capa-
bilities. Likewise, Time Division Multiple Access (TDMA)
with dynamic configuration capabilities is employed in pro-
tocols for the network domain (e.g., MPLS) for the resource
allocation and quality-of-service guarantees.

III. DISTRIBUTED, INCREMENTAL AND CONCURRENT
SCHEDULING IN SOS

The SoS is characterized by its dynamic nature, where appli-
cations are introduced at runtime. Therefore, communication
resources and computational resources of the platform have to

be dynamically allocated to the application. More precisely,
the following decisions need to be taken for a new application:

• SoS-level allocation: Each application subsystem must be
allocated to a constituent system.

• SoS-level communication: Messages between application
subsystems must be mapped to paths between constituent
systems along network domains.

• Allocation within constituent systems: Jobs must be allo-
cated to endsystems within each constituent system.

• Communication within constituent systems: Messages be-
tween jobs of an application subsystem must be scheduled
using paths between endsystems along routers.

In many safety-relevant systems, the inherent determinism
of the time-triggered paradigm comes at the expenses of
significantly reducing flexibility when adaptation to new events
is required. For SoS, it is of crucial importance to dynamically
adapt to the addition, change and removal of application ser-
vices and physical building blocks (e.g., constituent systems,
network domains). At the same time, we need to retain real-
time and safety properties. Overcoming this limitation implies
the ability of modifying the time-triggered schedule during
runtime rather than precalculating offline schedules.

A naive approach relies on centrally computing new time-
triggered schedules upon requests. However, the computation
time needed to generate such a global schedule makes this
approach unfeasible for fast-changing systems. In addition,
SoS lack central information about the internal structure of
all constituent systems.

Therefore, the following three principles are the foundation
for the scheduling and allocation in SoSs:

• Incremental scheduling. In incremental scheduling, the
transmission schedules of specific sending entities in the
network are extended or modified whenever additional
scheduled messages are required or whenever commu-
nication parameters are modified. An incremental trans-
mission schedule thus does not completely replace an
existing transmission schedule. However, it may modify
some aspects of an existing transmission schedule to
facilitate an incremental scheduling step. In order to
achieve this, the incremental approach for deterministic
networks should not require global knowledge about the
overall network topology. The trade-off is that increasing
the level of information about the network will result in
better schedules at the expense of increased computation
resources and network traffic for scheduling.
In this paper, the incremental scheduling is driven by the
dependencies imposed by the DAG of an application. An
application subsystem can be scheduled after the relied
upon subsystems have been scheduled. The dependencies
comprise the messages between the application subsys-
tem, where the transmission times determine the earliest
possible start times for the dependant subsystems.

• Distributed Scheduling. Distributed scheduling reduces
the overall scheduling time by parallelizing the search for
a feasible solution using horizontal, vertical and diagonal

partitioning schemes. We distribute the scheduling by
computing the schedule of each application subsystem
at the respective constituent system. The vertical parti-
tioning of the scheduling problem results from the incre-
mental scheduling steps of an application. In addition, the
scheduling problem is horizontally partitioned along the
different applications.

• Concurrent Scheduling. In a SoS many change requests
can be requested and processed in parallel. Therefore, a
SoS inherently requires concurrent scheduling of change
requests while preserving the consistency in the configu-
rations of constituent systems and network domains. For
example, several new applications can be introduced at
the same time as indicated in the medical monitoring
scenario described above.

A. Formal Description of Platform

For the formal description of the physical viewpoint we
introduce a set of endsystems ES, a set of constituent systems
C, a set of network domains N and a set of routers R. The ele-
mentary physical building blocks B (called nodes henceforth)
are the routers and endsystems, whereas constituent systems
and network domains are composite structures.

B = ES ∪R (1)

The platform is described by the following graph:

GP =< VP , EP >, VP = B,EP = B ×B (2)

Vertices are endsystems and routers, while edges represent the
communication links between routers and constituent systems.

Each node either belongs a constituent system or it is part
of a network domain of the SoS backbone infrastructure. This
mapping is described by the following function f :

fP : B 7→ C ∪N (3)

For a given constituent system or network domain, the nodes
and the edges between these nodes must form a connected
subgraph of GP .

Based on the constituent systems and network domains, we
can define a high-level physical graph GHP of the SoS.

GHP =< VHP, EHP >, VHP = C ∪N
EHP = {(e1, e2)|∃α, β ∈ EP : fP (α) = e1 ∧ fP (β) = e2}

B. Formal Description of Applications

From a logical point of view, the SoS consists of applica-
tions, where each application consists of jobs J that interact
via the exchange of messages. An application A is described
by the following DAG:

GA =< VA, EA >, VA = J,EA ⊆ J × J (4)

The edges between the jobs are messages, which are ex-
changed between jobs.

Each application consists of application subsystems AS,
which are connected subgraphs of GA. The mapping of jobs to

application subsystems is described by the following function
fA:

fA : J 7→ AS (5)

Based on the application subsystems, we can define a high-
level logical graph GHA of an application. This graph does not
include jobs, but only application subsystems and the messages
(i.e., edges) between application subsystems.

GHA =< VHA, EHA >, VHA = AS,EHA ⊆ AS ×AS
EHA = {(e1, e2)|∃α, β ∈ EA : fA(α) = e1 ∧ fA(β) = e2}

C. Formal Description of Scheduling and Allocation in SoS

Two levels of scheduling and allocation can be distinguished
in SoSs. Firstly, application subsystems must be mapped to
constituent systems. Secondly, the detailed scheduling and
allocation of the jobs within each application subsystem can
be performed.

a) High-Level Allocation of an Application: The first
step of the allocation is the mapping of application subsystems
to constituent systems:

ALLOCAS : AS 7→ C (6)

Thereafter, each edge < α, β > (i.e., message) of the high-
level application graph GHA must be allocated to a path p in
the high-level physical graph. Such a path in the high-level
physical graph consists of a sequence of network domains
from the constituent system of the sender α to the constituent
system of the receiver β.

ALLOCm : EHA 7→ p,EHA =< α, β >, p = (p1, p2, . . . , pn)

p1 = ALLOCAS(α)

pn = ALLOCAS(β)

∀i ∈ {1, 2, . . . , n− 1} :< pi, pi+1 >∈ EHP

b) Low-Level Allocation and Scheduling in Constituent
Systems and Network Domains: For each application subsys-
tem that is allocated to a constituent system c, the jobs J̄ need
to be allocated to the endsystems ES of c:

ALLOCjob,c : J̄ 7→ ES (7)
J̄ = {j ∈ J |fA(j) = as ∧ ALLOCAS(as) = c}

ES = {es ∈ ES|fP (es) = c}
Likewise, for each application subsystem that is allocated

to a constituent system c the respective messagess M must be
mapped to paths and schedules:

SCHEDULEm,c :M 7→ p,

M = {< α, β >∈ EA|fA(α) = fA(β) = as ∧ ALLOCAS(as) = c}
p = (p1, p2, . . . , pn)

p1 = ALLOCjob,c(α)

pn = ALLOCjob,c(β)

∀i ∈ {1, 2, . . . , n− 1} :< pi, pi+1 >∈ EP , fP (pi) = fP (pk) = c

A message is an edge < α, β > in the DAG of the
logical viewpoint. The respective jobs α and β must belong

to the same application subsystem as that is allocated to a
constituent system c. The links along the path p1, p2, . . . , pn
must be connected according to the graph GP of the physical
viewpoint.

trigger: new application A with GHA =< VHA, EHA >
determine ALLOCAS
determine ALLOCm

Mu = EHA // set of unscheduled messages
Ma = VHA // set of unscheduled application subsystems
while Mu 6= ∅ do

determine enabled messages Me ⊆Mu

pick a message m =< as1, as2 >∈Me

// retrieve path
p← ALLOCm(m)
// schedule sending application subsystem as1
// at constituent system c = p1 (if unscheduled)
if as1 ∈Ma then

incremental update of ALLOCjob,c for jobs in as1
incremental update of SCHEDm,c for msgs. in as1
Ma ←Ma r as1

end
// schedule network domains
for i← 1 to n− 1 do

incremental update of SCHEDm,n for <pi, pi+1 >
end
// schedule receiving application subsystem as2
// at constituent system c = pn (if unscheduled)
if as2 ∈Ma then

incremental update of ALLOCjob,c for jobs in as2
incremental update of SCHEDm,c for msgs. in as2
Ma ←Ma r as2

end
Mu ←Mu rm

end
Algorithm 1: Scheduling algorithm for new application A

D. Scheduling and Allocation Algorithm

The scheduling and allocation algorithm is summarized in
Algorithm 1. The scheduling process is triggered by the arrival
of a new application A. Initially, the allocation of subsystems
to constituent systems ALLOCAS and the paths between
constituent systems ALLOCm are determined. Thereafter, an
enabled message is retrieved from the high-level application
graph. A message is enabled if the relied upon application
subsystems were already scheduled or if there are no relied
upon application subsystems. In this case, the allocation and
scheduling of the jobs and messages within the sending
application subsystem as1 is performed (i.e., ALLOCjob,c and
SCHEDULEm,c). After the messages are scheduled on the
network domains, the jobs and messages within the receiving
application subsystem as2 are scheduled.

IV. SCHEDULING MODEL

This section presents the scheduling model for the incre-
mental scheduling steps as introduced in the previous section.

New Reserved Resources

Incremental
 Schedule

Incremental
 Schedule

Logical and Physical Input Model

CSM

(CSn)

CSM

(CSn-1)

. Information about Reserved Resources

CSM

(CSn+1)

Fig. 2: Logical Viewpoint of Local Scheduler

The model serves for the scheduling of an application subsys-
tem in a constituent system according to Algorithm 1. Hence,
the presented scheduling model serves for the local scheduling
problem that needs to be solved by a CSM.

The CSM needs to interact with other CSM as part of
the distributed and incremental scheduling. In general, a sub-
system will depend on messages from other subsystems and
provide relied-upon messages to other subsystems. We denote
these messages as border messages (red arrows in Figure 1)
and we distinguish between incoming and outgoing border
messages.

A. Input

1) Input Model: Table I depicts a summary of the constants
with their associated domains. A constituent system consists of
a number of routers R that can be interconnected in different
topologies. Each of these routers has a number of endsystems
that are connected in a star topology to the router. The total
number of endsystems is ES and the number of nodes of
a constituent system is B = ES + R. These nodes are
interconnected using bi-directional physical communication
links which can be described by a two-dimensional boolean
array C, in which the B2 values of the matrix are either 0 (not
connected) or 1 (connected). In this work, the connectivity
matrix is sorted where all endsystems come first and then
the routers. This helps to reduce the computation time for
scheduling.

To simulate the transmission and reception of border mes-
sages between applications in the proposed model, border
routers BR are introduced in each constituent system. These
routers are the access-points of constituent systems to the re-
spective network domain. Conceptually, these routers allocate
the jobs that either send or receive border messages. For better
understanding and simplicity of the model, one border router
is introduced in each constituent system.

The connection of routers to endsystems is listed in a vector
DRouter that is determined by the connectivity matrix C. Each
message requires a certain time, depending on the size of
the message, to be transmitted on a link. Thus, every time
a message is sent from one link to another one, its time is
advanced by a hop transmission time U .

The application subsystem consists of a number of jobs
J that communicate with each other by the exchange of
M messages. These uni-directional messages are sent by the
sending jobs, which are denoted by the vector S, where one
job can send more than one message. These messages are
received by jobs which can be specified in a two-dimensional
boolean array D, where rows represent messages and columns
represent receiving jobs. For example, d2,4 = 1 denotes that
message 2 is sent to job 4.

When a message is transmitted inside a subsystem, the
sender of this message is an endsystem. On the other hand,
when the message originates from outside the subsystem, then
the sender of the message is modelled as a border router in the
scheduling problem. A boolean vector SN is used to specify
whether a message is locally injected (snm = 1) or from
another constituent system (snm = 0). Similarly, a boolean
vector DN is used to differentiate between locally received
messages (dnm = 1) or outgoing border messages (dnm = 0).

To keep track of the number of incoming border messages
and outgoing border messages in each subsystem the constants
INC and OUT are used respectively. Every message in the
SoS has a unique identifier GID called the global message
ID.

The computation time of jobs E is the execution time
needed by the receiving job before sending a subsequent
message.

2) Resource Information of CS: The introduction of a new
application subsystem in a constituent system triggers dynamic
reconfiguration by requiring a schedule for the additional jobs
and messages. The CSM needs to calculate a new schedule
for these jobs taking into account the reserved resources of
previous schedules. Therefore, a multi-dimensional array Res
is used to keep track of these reserved resources. The first
and the second dimensions refer to the indices of the two
nodes connecting the link (i.e., range 1 . . . B). Finally, the third
dimension denotes the index of the reservation of this link.
Each link can have more than one reservation.

3) Scheduler State: Incremental scheduling in an SoS is the
scheduling of messages that are transmitted between differ-
ent subsystems. This requires information about transmission
times of border messages in each subsystem in order to
schedule these messages in the next subsystem.

A set of tuples BM is used that records the finish times
of all border messages sent between subsystems. Each tuple
contains two non-negative numbers, namely a global message
ID and a finish time (ft). The finish time denotes the time by
which a incoming border message is received at the border
router towards the other constituent systems.

BM = {(gid1, ft1), (gid2, ft2), . . .}
with gidi ∈ {1, 2, . . . ,M}, fti ∈ N

B. Decision Variables

The local scheduler of the CSM generates two types of
output information. A new schedule state for the new jobs
and updated information about reserved resources. The latter

Domain Constant name Type Description

ES N Number of endsystems
R N Number of routers
B ES +R ∈ N Numbers of nodes (ES+R)

Constituent BR N Number of border routers

System C


c1,1 . . . c1,B

...
. . .

...
cB,1 . . . cB,B

 ∈ {0, 1}N×N Node connectivity

DRouter [dr1 . . . drES]
T ∈ {ES + 1, ..., B}ES Router connected to an endsystem

U [u1 . . . uM]T ∈ NM Hop transmission time

J N Number of jobs
M N Number of messages
S [s1 . . . sM]T ∈ {1, ..., J}M Sender jobs

Application D


d1,1 . . . d1,J

...
. . .

...
dM,1 . . . dM,J

 ∈ {0, 1}M×J Destination jobs

SN [sn1, . . . , snM]T ∈ {0, 1}M Vector denoting for each msg. whether of local origin
Subsystem DN [dn1, . . . , dnM]T ∈ {0, 1}M Vector denoting for each msg. whether with local destination

INC N Number of incoming border messages
OUT N Number of outgoing border messages

E [e1 . . . eJ]
T ∈ NJ Job execution time

GID [gid1, . . . , gidM]T Global message ID

TABLE I: Overview Input Table

is used to update the reserved resource database for subsequent
scheduling steps.

1) New Schedule: This output information contains the
schedule of the new jobs and messages. It consists of a
schedule for time-triggered messages (i.e., mapping of jobs
to endsystems, message paths) taking into account the depen-
dencies with other local messages and border messages.

a) Job Allocation: These variables denote the allocation
of jobs to the nodes of the physical platform model. Jobs
that send and receive local messages can only be allocated
to endsystems while jobs that either send or receive border
messages are allocated to the border router. Since nodes are
sorted with endsystems and border routers coming first, the
maximum value ai of an allocation variable is the sum of the
numbers of endsystems and border routers.

A = [a1 . . . aJ]
T ∈ {1, ..., ES +BR}J

To ensure that each job is allocated to exactly one endsys-
tem, a boolean matrix ALLOCM is used where the rows
relate to jobs and columns to endsystems. For example,
mat3,1 = 1 means that job 3 is allocated to endsystem 1.

ALLOCM =

mat1,1 . . . mat1,ES

...
. . .

...
matJ,1 . . . matJ,ES

 ∈ {0, 1}J×ES

To keep track of routers via which a job can transmit a
message we use a vector R. The vector R denotes for each
job an access-point router that is directly accessible from the
endsystem where the job is located. All other routers can only

be reached by more than one hop. For example, sr2 = 14
denotes that the router with ID 14 is the access-point router
for the endsystem hosting the job 2.

SR = [sr1 . . . srJ]
T ∈ {Z, ..., B}J

where Z = ES +BS + 1.
b) Hop Count: A message is injected at the source

endsystem, where the sender job was allocated. It is then
transported along one or more routers before being received
by the endsystem of the destination job. In order to express
the number of visited routers for each message after the
access-point router the vector hop count H is used and the
maximum value of its elements denotes the critical path length.
In the absence of cyclic paths, the maximum path length is
maxH = R− 1.

H = [h1 . . . hM]
T ∈ {1, ...,max

H
}M

c) Injection Time: This one-dimensional array represents
the times by which the messages are injected in the network
of thec onstituent system.

I = [i1 . . . iM]
T ∈ {0, ...,N}M

d) Path and Visited Routers: To record the path between
the message’s source and destination endsystem, the path array
P is used. Since the sending and the receiving jobs are known
beforehand, each row represents the path of a message starting
from the router connected to the endsystem which allocates a
source job to the router connected to the endsystem in which
the destination job is allocated. For example, p1,2 = 14 means

that the second router that message number 1 visits is the node
with ID 14. The maximum number of nodes in a path equals
the maximum number of hops.

P =

 p1,1 . . . p1,R
...

. . .
...

pM,1 . . . pM,R

 ∈ {Z, ..., B}M×R

where Z = E + 1.
For the purpose of calculating the end-to-end latency, a

boolean matrix O is used to denote the routers that are passed
by a message. For example, o2,3 = 1 means that message 2
travels through a router with ID 3.

O =

 o1,1 . . . o1,R
...

. . .
...

oM,1 . . . oM×R

 ∈ {0, 1}M×R

2) Reserved Resources: After a schedule is generated, the
transmission links for paths of all messages are used to update
a reserved resources database Res. Each entry in this database
consists of the IDs of the endsystems and/or routers connecting
the reserved link in addition to the start time of a message at
the specified link. For example, Res3,5,2 = 10 denotes that
the link connecting nodes 3 and 5 has two reservations. The
second reservation starts at 10 ms and has a duration of the
transmission time of the message um.

C. Scheduling Constraints

This part describes the constraints that are used in the
scheduling of time-triggered messages in a constituent system.

1) Distributed Scheduling Constraints: As a prerequisite
for the distributed scheduling, the CSM requires information
about the transmission times of border messages that are
exchanged between different application subsystems.

The injection times of local messages (snm = 1) as well as
incoming border messages (snm = 0) in a subsystem can be
evaluated as follows:

∀mi ∈ {1, ...,M} :

snmi
= 1→ imi

≥ umi

snmi
= 0→ imi

≥ imi
where (gidmi

, imi
) ∈ BM

(8)

2) Incremental Scheduling Constraints: New applications
introduce additional jobs where the new schedule must take
into account the reserved resources of the previous schedule
as denoted by Res. These corresponding constraints can be
divided into three groups:

• Constraints for links between sending endsystems and
their access-point routers

• Constraints for links among routers
• Constraints for links between receiving endsystems and

their access-point routers

a) Reserved resources between sending endsystems and
their access-point routers: Endsystems are connected to
routers in a star topology. Hence, if the sender is an endsystem,
it means that there is only one link where the first node is an
endsystem and the second node is its access-point router.

∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ..., B} :

(Resr1,r2,0 ≥ 0) ∧ (r1 ≤ ES) ∧ (snm1
= 1)

→

(
(asm1

6= r1 ∨ pm1,0 6= r2)

∨
(M∧

z=1

(im1
≤ Resr1,r2,z)

∨ (im1
− um1

≥ Resr1,r2,z + im1
)
))

(9)

b) Reserved resources among routers: Since the connec-
tions of the routers can have different topologies, all possible
paths need to checked regarding the reserved resources.

∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ..., B} :

(Resr1,r2,0 ≥ 0) ∧ (r1 ≤ ES) ∧ (dnm1 = 1)

→

(
R∨

r3=2

(
(pm1,r3−1 6= r1 ∨ pm1,r3 6= r2)

∧ (pm1,r3−1 6= r2 ∨ pm1,r3 6= r1)
)

∨ (hm1<r3)

∨
(M∧

z=1

(im1
+ r3 · um1

≤ Resr1,r2,z)

∨ (im1
+ (r3 − 1) · um1

≥ Resr1,r2,z + im1
)
))

(10)

c) Reserved resources between receiving endsystems and
their access-point routers: Again, if the receiving node is an
endsystem, it means that there is only one link where the first
node is an endsystem and the second node is its access-point
router.

∀m1 ∈ {1, ...,M},∀r1, r2 ∈ {1, ..., B} :

(Resr1,r2,0 ≥ 0) ∧ (r1 > ES) ∧ (r2 > ES)

→ ∀j1 ∈ {1, ..., J} :

dm1,j1 = 1

→

(
(aj1 6= r1 ∨ pm1,0 6= r2)

∨
(M∧

z=1

(im1 + r3 · um1 ≤ Resr1,r2,z)

∨ (im1 + (r3 − 1) · um1 ≥ Resr1,r2,z + im1)
))

(11)

3) Connectivity Constraint: The first constraint considers
the path topology of the network based on the node connec-
tivity C. Since an endsystem is connected to only one router,

the connectivity constraints can be reduced by considering
only the routers. If there is no direct connection between two
routers a and b, then the path of a message must not include
a hop from a to b.

∀m1 ∈ {1, ...,M},∀r ∈ {1, ...,MaxH} :

hm1 ≥ r + 1

→

 B∨
a,b=ES+1

ca,b = 1→ Connected(a,b)

 (12)

where the function Connected() states that a message’s path
is allowed to pass through the link between the two routers a
and b.

Connected(a, b) = (pm1,r = a ∧ pm1,r+1 = b)

4) Collision Avoidance Constraint: These constraints are
divided into three groups:

• Constraints to avoid collisions between a sending node
and its access-point router

• Constraints to avoid collisions between routers
• Constraints to avoid collisions between a receiving node

and its access-point router
The first constraints apply when a job sends more than one
message. Since, there is only one link between any endsystem
and its access-point router, the constraints ensure that trans-
mission times following the injection times I do not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 + 1, ...,M},
sm1

= sm2

→ (im1
≥ im2

+ um2

∨ im2
≥ im1

+ um1
)

(13)

To prevent collisions of transmissions between routers, the
scheduling of time-triggered messages ensures that no two
messages are transmitted on one link at the same time. Thus,
the messages should be transmitted on different paths or one
needs to be scheduled before or after the transmission of the
other message.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 + 1, ...,M},
∀r1, r2 ∈ {1, ...,MaxH} :

(pm1,r1 6= pm2,r2 ∨ pm1,r1+1 6= pm2,r2+1

∨ r1 + 1 > hm1
∨ r2 + 1 > hm2

∨ im1
+ (r1 + 1) · um1

≤ im2
+ r2 · um2

∨ im2
+ (r2 + 1) · um2

≤ im1
+ r1 · um1

)

(14)

The third type of constraints is used when a job receives
more than one message. Since there is only one link between
an endsystem and its access-point router, these constraints
ensure that the transmission times of the messages from the
access-point router to the endsystem do not overlap.

∀m1 ∈ {1, ...,M},m2 ∈ {m1 + 1, ...,M},
j1 ∈ {1, ..., J} :

dm1,j1 = 1 ∧ dm2,j1 = 1

→ (im1
+ (hm1

+ 1) · um1
≤ im2

+ hm2
∗ um2

∨ im2
+ (hm2

+ 1) · um2
≤ im1

+ hm1
∗ um1

)

(15)

5) Job Dependency Constraint: Depending on the prece-
dence constraints between the jobs, jobs may need to wait for
the output of the transmission of other jobs before they begin
the transmission. This constraint ensures that if a job sends
a message m1 to another job that needs the output of m1 in
order to send m2, the start time of m2 must be after the end
of the transmission and execution of m1.

∀m1,m2 ∈ {1, ...,m},∀j1 ∈ {1, ..., j} :

dm1,j1 = 1 ∧ sm2
= j1

→ im1
+ (hm1

+ 1) · um1
+ ej1 < im2

(16)

Each message must reach the destination node within its path
and the selected number of hops.

∀m1 ∈ {1, ...,M},∀j1 ∈ {1, ..., J}
dm1,j1 = 1

→

(
W∨

r1=1

(pm1,r1 = srj1 ∧ r1 = hm1
)

) (17)

6) Job Assignment Constraints: These constraints ensure
that a job can be assigned to only one endsystem. This is
done by having the sum of each row in ALLOCM (i.e., for
each job) equal to 1. Then, the allocated endsystems are stored
in the allocation array A and the access-point routers of the
endsystems are stored in SR.

∀j1 ∈ {1, ..., j} :(
E∑

r1=1

matj1,r1

)
= 1(

E∨
r1=1

matj1,r1 = 1→ (aj1 = r1 ∧ srj1 = drr1)

) (18)

To allow only one job to be allocated to an endsystem, the
sum for each endsystem must be less than or equal to one.

∀r1 ∈ {1, ..., E} : j∑
j1=1

matj1,r1

 ≤ 1
(19)

In order to start the path of each message with the access-
point router of the endsystem that hosts the job, the first
node for each message path p1,1 . . . pm,1 is required to be
the access-point router.

∀m1 ∈ {1, ...,M},∀j1 ∈ {1, ..., J} :

sm1 = j1

→

(
ES∨
r1=1

(aj1 = r1 ∧ pm1,1 = drr1

) (20)

D. Objective Function

The objective is to minimize the maximum transmission
time of the time-triggered messages (i.e., minimization of
critical path). This is done by first finding the transmission
time of each time-triggered message, expressed as the sum of

CS 0

CS 1

IDs

CS 2

CS 4

AS 0

AS 1 AS 2

Fig. 3: Generated Platform and Application

the injection time im and the number of hops hm multiplied
by the transmission duration of a message um. Then, the
objective function minimizes the highest value among all these
messages.

∀m1 ∈ {1, ...,M} :

CP [m1] = (im1
+ hm1

· um1
)

minimize max(CP)

(21)

V. EXPERIMENTAL EVALUATION

This section discusses the experimental evaluation. A gen-
erator for example scenarios and a high-level scheduler were
implemented to validate the scheduling problem.

A. Generator for Example Scenarios

A generic SoS generator was realized to build example
scenarios for the evaluation of the proposed scheduling mod-
els. Based on input parameters, the generator creates random
platforms and applications according to the conceptual model
introduced in Section II. The input parameters for the physical
viewpoint include the desired number of constituent systems
and network domains, the average number of end systems and
routers per constituent system, and the average node degree
of the routers. In the logical viewpoint, input parameters are
the desired number of applications, the average number of
subsystems per application, the number of jobs per application
subsystem and the average node degree of jobs.

The Stanford Network Analyzer Platform (SNAP) [13]
library was used for the generation of DAGs and undirected
graphs in the generations. A DAG is required for the graph
of jobs in each application subsystem as well as for the
interconnection of application subsystems. The undirected
graphs describe the connectivity of the routers in constituent
systems as well as the interconnection of network domains

and constituent systems. The outputs are visualized using the
GraphViz library.

An example of a generated scenario is shown in Figure 3.
The figure depicts in detail one of the constituent systems
with 20 endsystems and routers where node ID 15 is a border
router; it has also one of the application subsystems with 6
jobs. The jobs of the application subsystem 1 send 6 local
messages and one border message. In addition, one incoming
border message is received from another constituent system.

B. High-Level Scheduler

A high-Level scheduler was implemented to evaluate the
conceptual model and the scheduling problem. This high-level
scheduler implements Algorithm 1 by performing a random
allocation of application subsystems to constituent systems.
The paths between application subsystems are determined
by computing the shortest paths. An extension of the high-
level scheduler with support for an optimized allocation of
application subsystems and path determination at the SoS-level
is planned as future work.

The output of the high-level scheduler are CPLEX schedul-
ing models with the constants, constraints and decision vari-
ables as introduced in Section IV.

C. Results

Table II depicts the scheduling time for three different SoSs.
Every SoS consists of seven applications each containing four
application subsystems. The computation times were obtained
with CPLEX 12.6.1 running on a 12 processor Intel(R)
Xeon(R), 2.2 GHz server with the operating system Linux
Ubuntu 14.04.1. CPLEX was used for the local scheduling
in each constituent system, either stopping after a feasible
solution is found or computing an optimal local schedule.

Scenario Logical Viewpoint Physical Viewpoint Finish Time Execution Time
Applications Jobs Messages CS Endsystems Routers Feasible Optimal Feasible Optimal

1 30 30 39 36 3.08 3.48
2 30 38 51 48 11.96 27.76
3 30 30 69 42 14.42 13.55

SoS 1 4 30 26 4 75 21 63 42 19.47 95.31
5 30 30 87 84 112.5 331.23
6 30 30 114 102 136.95 522.36
7 30 30 96 90 236.21 737.3
1 30 30 39 33 3.72 6.41
2 30 30 48 60 10.69 11.86
3 30 30 45 36 10.34 17.91

SoS 2 4 30 30 4 85 23 123 117 49.61 50.41
5 30 26 60 54 81.75 98.74
6 30 26 90 69 39.18 41.39
7 30 26 75 81 298.76 545
1 30 26 54 51 2.59 2.93
2 30 30 72 72 4.52 6.45
3 30 38 78 60 33.56 105.5

SoS 3 4 30 30 4 74 21 66 66 32.34 520.3
5 30 26 90 84 21.25 111.33
6 30 26 72 81 108.37 452.19
7 30 26 81 93 351.8 692

TABLE II: Results of Different SoS Scenarios

The scheduling time is measured in seconds to find a
feasible solution as well as an optimal solution. The finish
times in the table denote the makespans of the respective
applications in ms. As can be seen in the table, in some cases
the optimal local schedule leads to increased makespans of
later applications. The reason is the unavailbility of early time
slots for messages of subsequent applications.

VI. CONCLUSION

The increasing importance of SoS with real-time require-
ments demands techniques for scheduled end-to-end com-
munication with resource reservations and temporal guaran-
tees. The end-to-end communication channels need to span
constituent systems with operational and managerial indepen-
dence, while also supporting an evolutionary development and
the dynamic introduction of new applications. The proposed
scheduling algorithm solves this challenge by performing an
incremental, distributed and concurrent scheduling of appli-
cations. Each constituent system and each network domain is
equipped with management services for incrementally comput-
ing local schedules for the respective application subsystems.
The resulting timing information of relied upon messages is
exchanged between constituent systems to satisfy the temporal
dependencies between application subsystems.

The introduced distributed and incremental scheduling re-
duces the overall computation time for feasible schedules,
while at the same time coping with the inherent limitations
of SoSs such as the managerial independence and the lack
of global knowledge about the internals of constituent sys-
tems. The evaluation demonstrates the achievable real-time
guarantees and the computation time for scheduling based on
example scenarios.

ACKNOWLEDGMENTS

This work has been supported by the European project
DREAMS under the Grant Agreement No. 610640.

REFERENCES

[1] M. Jamshidi, Systems of Systems Engineering - Principles and Applica-
tions. CRC Press, 2009.

[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” Internet of Things Journal, IEEE, vol. 1,
no. 1, pp. 22–32, Feb 2014.

[3] N. Jazdi, “Cyber physical systems in the context of industry 4.0,” in
Automation, Quality and Testing, Robotics, 2014 IEEE International
Conference on, May 2014, pp. 1–4.

[4] N. Wickramasinghe, S. Chalasani, R. Boppana, and A. Madni, “Health-
care system of systems,” in System of Systems Engineering, 2007. SoSE
’07. IEEE International Conference on, April 2007, pp. 1–6.

[5] M. Maier, Architecting Principles for Systems-of-Systems – Systems
Engineering, 1998.

[6] O. Yang and J. Lu, “Call admission control and scheduling schemes with
qos support for real-time video applications in ieee 802.16 networks,”
Journal of Multimedia, vol. 1, no. 2, pp. 21–29, 2006.

[7] C. J. Hamann, M. Roitzsch, L. Reuther, J. Wolter, and H. Hartig,
“Probabilistic admission control to govern real-time systems under
overload,” in Real-Time Systems, 2007. ECRTS’07. 19th Euromicro
Conference on. IEEE, 2007, pp. 211–222.

[8] S. Agrawal, P. Chaporkar, and R. Udwani, “Call admission control
for real-time applications in wireless network,” in INFOCOM, 2013
Proceedings IEEE. IEEE, 2013, pp. 330–334.

[9] D. Mora, M. Taisch, A. Colombo, and J. Mendes, “Service-oriented
architecture approach for industrial system of systems: State-of-the-art
for energy management,” in 10th IEEE International Conference on
Industrial Informatics (INDIN), July 2012, pp. 1246–1251.

[10] D. Suparna, G. Cassar, B. Christophe, S. Fredj, M. Bauer, N. Santos,
T. Jacobs, R. de las Heras, G. Martin, G. Völksen, and A. Ziller, “Internet
of things architecture. concepts and solutions for entity-based discovery
of iot resoures and managing their dynamic associations,” Tech. Rep.,
2012.

[11] FIWARE, IoT Discovery – User and Programmers Guide, 2015.
[12] IEEE, IEEE 802.1Qbv – Enhancements for Scheduled Traffic, Draft 2.4,

2015.
[13] J. Leskovec, “ Stanford Network Analysis Package(SNAP).” http://snap.

stanford.edu/, [Online; accessed 26-February-2015].

