
Evaluation of AI-based Meta-scheduling Approaches
for Adaptive Time-triggered System
Daniel Onwuchekwa, Moumita Dasandhi, Samer Alshaer, Roman Obermaisser

Department of Embedded Systems
University of Siegen

Siegen, Germany

Abstract—Adaptation in time-triggered systems is motivated by
the need to attain higher energy efficiency, carry out fault recovery
functions, and adapt to changing environmental conditions. Adap-
tation can also be attained by modifying the allocation of services
to resources, substituting failed resources or transitioning into a
degraded service mode. Time-triggered systems can deploy meta-
scheduling to enhance adaptation. Nevertheless, state-of-art meta-
schedulers suffer state explosion, and pose storage constraints for
cyber-physical systems. This work proposes an architecture that
uses machine learning to infer new schedules at run-time, thus
eliminating the need to store the large schedule sets generated by
a meta-scheduler. It investigates the performance of three machine
learning models, Random Forest Classifier(RFC), Artificial Neural
Network (ANN), and Encoder/Decoder Neural Network (E/D NN).
It is observed that the performance of models are dependent on
the complexity of the scheduling problem. The E/D NN model
performed better than the ANN and RFC for all job sizes. The
resulting accuracies for 15 jobs are 98.39%, 95.33%, 86.86% for
E/D NN, RFC, and ANN, respectively. The resulting accuracies
for 60 jobs are 87.67%, 60.94%, 81.05% for E/D NN, RFC,
and ANN, respectively. The implication of this work is that the
proposed approach provides a means to compensate for the trade-
off between storage capacity of a CPS and the number of schedules
for each adaptation scenario. The proposed machine learning
based architecture is able to capture more scenarios without the
need to store schedules.

Keywords—Adaptation, Artificial Intelligence, Artificial Neural
Networks, Meta scheduling, Random Forest, Time-Triggered Sys-
tems.

I. INTRODUCTION

Adaptation in a Cyber-Physical System (CPS) is motivated
by the need to manage energy, failure and changing environ-
mental conditions adequately. Energy management is required
for most CPS, especially battery-operated devices used in
safety-critical applications. Common energy management CPS
techniques include Dynamic Voltage and Frequency Scaling
(DVFS) and clock gating. These techniques have limitations
when used for safety-critical systems. Their application can
lead to unpredictable timing and fault propagation due to shared
resources, especially when exploited for dynamic slack [1].
When certifying safety-critical systems, two types of energy
sensitivity distinctions are made, including energy efficiency
without detrimental effect on safety and energy efficiency as a
part of a safety argument.

This work has received funding from the ECSEL Joint Undertaking(JU)
under grant agreement No 877056. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Spain, Italy,
Austria, Germany, France, Finland, Switzerland.

Adapting to failures in CPS can be achieved by fault re-
covery, thereby enabling a system to switch to configurations
that exclude failed resources. Fault recovery also reduces the
redundancy degree in safety-critical CPS, lowering the cost
of fault tolerance. Approaches to fault recovery can include
adapting by modifying the allocation of services to resources,
substituting services that have failed, or switching the system
to a degraded mode.

Adaptation can be triggered by changing environmental con-
ditions such as temperature, pressure, or user-defined scenarios
to maintain the desired system state.

Safety-critical systems can exploit the properties of time-
triggered architectures to guarantee stringent safety and timing
requirements, such as meeting tight deadlines. The properties of
time-triggered architectures include the avoidance of resource
contention without dynamic resource arbitration, implicit syn-
chronisation, timing guarantees, implicit flow control, and fault
containment.

An Adaptive Time-Triggered Multicore Architecture
(ATMA) was introduced in prior work to enhance
adaptation in CPS systems [1]. ATMA described and
modelled a time-triggered infrastructure which can support
adaptation by eliminating failed resources using online system
reconfiguration. The ATMA also supports adapting to dynamic
slack or changing environmental conditions. The adaptation
is based on a meta-scheduler infrastructure, where multiple
schedules for different scenarios are generated offline. In
response to the occurrence of the scenario which is recognised
during runtime, the system switches schedules to one that
eliminates failed resources, exploits dynamic slack, or adapts
to a change in environmental conditions.

However, the proposed architecture in [1] suffers a challenge
with the meta-scheduler, which exposes a state explosion during
the generation of schedules. Although two algorithms were pro-
posed to handle the state explosion, the implementation of these
algorithms in [2] shows a limitation in the number of adapt-
able scenarios.The first algorithm is termed ”re-convergence
horizon” where schedules are only computed within a prede-
fined bound. The second is the ”path re-convergence” where
scenarios that result in schedules that are already in the graph
of computed schedules are linked instead of adding a new
schedule node to the graph. including schedules for scenarios
that are not covered at design time. In order to cover more
scenarios, more schedules have to be generated; therefore, the
horizon is increased. The large number of schedules generated

for adaptation also poses a challenge for the storage in CPS.
This paper proposes a machine learning-based approach to

handle the large number of schedules generated by a meta-
scheduler. Based on the observed context event, the machine
learning model serves for inference on an updated schedule.
The machine learning approach is considered since it elim-
inates the need to deploy many schedules on the CPS. In
addition, the machine learning model will be able to predict
schedules that are required for adaptation, including schedules
for scenarios that are not covered at design time. Also, the
recent technology trend where AI-accelerators are integrated
into embedded hardware, such as the Xilinx versal Adaptive
Compute Acceleration Platform (ACAP) devices [3], provide
the enabling hardware platforms that supports the approach.
The proposed work presents an approach to exploring adapta-
tion in a statically configured time-triggered application using
AI-based scheduling schemes. It offers an adaptation solution
for safety-critical applications such as aerospace, automotive,
and health systems that utilize a time-triggered paradigm.

The contributions of this work are as follows:
• A machine learning-based model for determination of

schedule using inference is developed time-triggered
schedule prediction is developed.

• We investigate the performance of three machine learning
models; Random Forest Classifier (RFC), Artificial Neural
Network (ANN), and Encoder/Decoder Neural Network
(E/D NN). The performance evaluation is based on com-
paring the complexity and accuracy of the models.

The remainder of this paper is structured as follows. Sec-
tion II discusses the related works. A background on meta-
scheduling is provided in section III. The proposed machine-
learning based scheduler is presented in section IV. An evalua-
tion technique for the proposed approach is setup in section V.
We discuss the results in section VI, and conclude in section
VII.

II. RELATED WORK

A. Related works on metascheduling

In prior work we proposed a meta-scheduling algorithm
where a scheduler is invoked repeatedly to generate schedules
for different scenarios. The proposed algorithm is not limited
to a specific scheduler. For example, it can utilise schedulers
that provide solutions based on Genetic Algorithm (GA), Mixed
Integer Linear Programming (MILP), and Ant Colony Optimi-
sation (ACO).

Babak in [4] proposed an optimisation method which es-
tablishes the minimum energy consumption for slack events
by mixed-integer quadratic programming (MIQP) equations.
The work used the meta-scheduling algorithm proposed in [1].
Issues regarding handling the large schedule size generated due
to state explosion were not covered.

Muoka et al. in [2] attempted to solve the state explosion
problem of the meta scheduler algorithm by implementing two
algorithms. These algorithms include path reconvergence and a
reconvergence horizon. The path reconvergence horizon dealt
with removing Deja Vu schedules from the list of computed
schedules. The reconvergence algorithm established bounds for

the meta-scheduler to add schedules to the list of schedules
required for adaptation. In contrast, we propose a solution
that uses machine learning to eliminate the need for tightly
bounding the limits of adaptation when implementing the
reconvergence horizon.

B. AI-based Scheduling

There are several applications of machine learning to solve
different scheduling problems, such as job-shop and workflow
scheduling. A hybrid deep neural network scheduler (HDNNS)
was introduced by Zang et al. [5] to solve the job-shop schedul-
ing problem. A convolution two-dimensional transformation
(CTDT) was used to convert JSSP’s irregular scheduling infor-
mation into regular data. The HDNNS architecture is designed
by combining a deep convolution layer, a fully connected layer
and a flattening layer. In contrast, we explored the applicability
of neural networks where a scheduler is trained with data from
a meta-scheduler, thus more focused training and potentially
higher accuracy.

Deep reinforcement learning is applied to the scheduling
of time-triggered Ethernet in [6]. A scheduling agent is first
trained offline and later deployed for the online scheduling
of time-triggered flows. Similarly, Stacked Autoencoders-based
Deep Reinforcement Learning was implemented by Jiang et
al. in [7] for online resource scheduling in large-scale mobile-
edge computing networks. The authors proposed a scheduling
framework with components to minimise the sum of weighted
task latency for Internet-of-Things users. According to the
authors, the deep reinforcement learning approach is proposed
for optimising offloading decisions, power transmission, and
resource allocation in the large-scale Mobile Edge Computing
(MEC) system. However, we applied the Encoder/Decoder
Neural network for adaptive scheduling using data generated
from a MSG.

Melnik et al. in [8] proposed a scheduling approach using
Artificial Neural Networks (ANN) and Reinforcement Learning
(RL) for a workflow system. The authors focused on analysing
the scheduling problem using RL, which helps form the input
states and considers the structure of the workflow. The Neural
Networks Scheduling (NNS) algorithm is based on RL to
learn how to provide qualitative schedules in the workflow
makespan. In contrast, we have used the ANN algorithm for the
adaptive scheduling, where we predicted the priorities before
subsequently computing new schedules. The priority prediction
approach ensures that only correct schedules are computed
while guaranteeing safety.

Li et al. in [9] proposed a production rescheduling framework
using machine learning techniques and industry optimisation
algorithms. The authors first focused on modelling the Flexible
Job-Shop Scheduling Problem (FJSP), after which they solved
FJSP using a hybrid meta-heuristic approach. Finally, they
proposed a rescheduling framework which uses machine learn-
ing and optimisation algorithms such as tabu search to make
rescheduling decisions. The machine learning algorithms used
include Multi-layer Perceptron (MLP), Support Vector Machine
(SVM) and Random Forest Classifier (RFC). In contrast, we

focused on the adaptive scheduling with an architecture that
evaluates the applicability of ANN, RFC, and E/D NN.

A machine learning-based approach is used by Shiue et al. in
[10] for real-time scheduling systems (RTS). The authors used
an ensemble based on the wrapper feature selection approach.
The base classifiers of RTS were created using GA along with
a Neural Network, Decision tree and SVM Classifiers. Each
base classifier was trained using bagging data in the proposed
ensemble RTS. Finally, the base classifiers were ensembled by a
majority voting strategy. According to the authors, the ensemble
technique could enhance the generalisation ability of the RTS
with respect to the classic ML-based classifier approaches.
The experimental results showed that the proposed ensemble
RTS classifier could generalise better than the individual base
classifiers. Similarly, we evaluated the knowledge of ensemble
learning (i.e. Random Forest) in our implementation. In con-
trast, our work applies RFC for adaptive scheduling.

Scheduling in the cloud computing domain is of interest
to many researchers and often applies machine learning tech-
niques. Gondhi et al. [11] reviewed papers regarding scheduling
in cloud computing. The authors mentioned various advanced
intelligent scheduling algorithms (with a swarm-based ap-
proach) that are used in the cloud computing domain. The
target of scheduling in cloud-based computing is to provide
load balancing, enable a scalable framework, and reallocate
resources.

III. BACKGROUND ON META-SCHEDULING

The meta-scheduler is a tool for computing time-triggered
schedules considering the system’s conceptual, spatial and tem-
poral dimensions [12]. At any point in time, for each context,
the respective schedules will be responsible for determining the
sequence of the resource usages within the system’s time frame.
The context of the meta-scheduler is presented in [1] where it
was utilised in conjunction with an Adaptive Time-triggered
Multi-core Architecture (ATMA) and an agreement protocol to
enable scenario-based adaptation.

The meta-scheduler computes a Multi-schedule Graph
(MSG) using an application model, platform model and a
context model as its input. The MSG is generated at design
time for time-triggered systems and it is a Directed Acyclic
Graph (DAG), G(V, E), where each vertex, si ∈ V represents a
schedule i, and the edge cik ∈ E represents context events that
enable the schedule transitions si −→ sk. During runtime, the
time-triggered system utilises one schedule (node) at a given
time instance from the MSG. The system traverses from one
node to another one when a context event occurs.

The application model provides the computational task de-
tails, including their Worst-Case Execution Time (WCET),
deadline and resources (i.e. memory and I/O). The platform
model is used to describe the available hardware resources
such as cores, memories, input-outputs, routers and the physical
links where applicable. Finally, the context model is used to
describe all the considered context events in the meta-scheduler.
These context events can include faults, dynamic slack, and
environmental changes intended for adaptation.

Application
Model

Platform
Model

Context
Model

Meta-scheduler

Scheduler
(GA)

S0

S1 S2

~event e event e

MSG

Figure 1: Generation of MSG

The generation of the MSG is illustrated using Figure 1. The
meta-scheduler generates the MSG at design time. The meta-
scheduler takes in the application, platform, and context models
as inputs. Afterwards, it invokes a scheduler multiple times to
generate new schedules that conform to a given context event.
The scheduler component can generate solutions using different
algorithms such as Genetic Algorithm (GA), Mixed Integer
Linear Programming (MILP), and Ant Colony Optimisation
(ACO). However, this work utilised the GA as the scheduler
component, and the meta-scheduler computes offline the MSG
for all potential context events.

Algorithm 1 describes the meta-scheduler component in
Figure 1. It consists of a procedure which takes as input the
application model (AM), platform model (PM), context model
(CM), a set of fixed decision variables (FIX), and the previous
schedule (prev). Before calling the meta-scheduler procedure,
the variable FIX and the MSG indicated as SG in the algorithm
are initialised.

The procedure begins by invoking the scheduler compo-
nent to compute a base schedule (initial schedule S0). New
schedules that are subsequently computed are compared with
the schedules in the MSG for identity. The existence of the
identity is referred to herein as Deja Vu, indicating that the
schedule already exists. A new schedule will not be computed
if there is a Deja Vu node. Instead, the current schedule with its
corresponding edge context will be connected to the Deja Vu
node. If there is no Deja vu node, the algorithm computes a new
schedule for every event in the context model by including the
event’s impact in the computed schedule. The meta scheduler
considers mutually exclusive events. For instance, a dynamic
slack value for given task makes it impossible for another slack
event for the same task. These context events in the CM are
applied to the AM or PM, and a set of decision variables is
fixed. The fixing of the decision variables arises from the need
to pin down events that have already occurred while computing
a new schedule. For instance, as we step through the schedule-
timeline, jobs or tasks that are in the past are fixed. The meta-
scheduler procedure is then recursively invoked to cover all
context events.

A significant challenge for meta-schedulers is state explosion
mentioned in [1], which handled the issue with a reconvergence
of paths algorithm and a reconvergence horizon. The reconver-
gence of path concept is integrated into the Algorithm 1 using

the already explained Deja Vu concept. The reconvergence
horizon was integrated and studied in [2].

Algorithm 1 Algorithm of Meta-Scheduler

Require: initial application model: (AM), initial platform
model: (PM), initial context model: (CM), initial multi-
scheduled graph: (SG = {}) and initial fixed decision
variables: (FIX = {})
procedure META-SCHEDULER(AM,PM,CM,FIX, prev)

invoke scheduler(AM,PM,FIX) to obtain schedule S
S = {< d, t(d) >} . decision variable d with action

time t(d)
n =< S,CM > . new node for schedule graph
if (n ∈ SG) then . Deja Vu

connect previous node prev to existing node n in SG
else

add n to SG
if (prev 6= NULL) then

connect node prev to new node n in SG
end if
while (CM 6= {}) do

e = earliest context event from CM with event
time t(e)

EX = context events that are mutually exclusive
with e

CM ′ = CM \ (EX ∪ {e})
AM ′ = result of applying e to AM
PM ′ = result of applying e to PM
FIX = {< d, t(d) >∈ S | t(d) ≤ t(e) ∨ t(d) ≥

t(e) +HORIZON}
recursively invoke META-SCHEDULER

(AM ′, PM ′, CM ′, F IX, n)
end while

end if
end procedure
meta-scheduling: invoke META-SCHEDULER (AM, PM,
CM, FIX, NULL)

IV. AI-BASED SCHEDULING ARCHITECTURE

The architecture of our proposed AI-based adaptive scheduler
is depicted in Figure 2. The proposed model is subdivided
into two parts, namely, design time and run time. The design
time refers to the offline activities prior to the deployment of
schedules in the system, while the run time depicts the activities
that occur during the operation of the time-triggered system.

A. Design Time

The design time begins with the execution of Algorithm 1, to
generate the MSG. As shown in Figure 2, the meta-scheduler
takes in application, platform, and context model and repeatedly
invokes a scheduler for each context to create the MSG.

The proposed architecture presents a technique to handle the
short comings from the methods proposed in [1] and [2] to
handle state explosion of the MSG. The short comings are
that the use of the reconvergence horizon algorithm only limits

Name Description
job id ID of each Job

runs on Machine ID of each job execution
start time Starting time of a job execution

wcet Worst Case Execution Time of each
job

msg id Message ID used for communication
between different jobs

inj time Message injection time
msg size Size of the message

ridx Router index (i.e start index and its
further hops)

context 32-bits context event information
centrality Number of in-degree and out-degree

connections to the current node

TABLE I: Input Features

adaptation within certain reconfigurable bounds in the time-
triggered scheduling timeline. This previous solution enforces
a trade-off between the size of the MSG and the number of
context events that can be adapted to. This trade-off is due to
the limitations of the adaptable context events within a pre-
defined horizon.

Our approach does not directly deploy the MSG during run-
time and the complete MSG does not have to precomputed
at design time. Therefore, the issue of state explosion does
not appear in the meta-scheduling. Nevertheless, more data
generated in the MSG is beneficial to the machine learning
approach proposed for run time deployment.

1) Dataset: After the MSG is generated using Algorithm 1,
a dataset is created from it. Each node (i.e schedule) contained
in the MSG is stored in a JSON file format. A python script
is used to extract features required for the machine learning
algorithms.These input features are described in Table I.

As shown in Table I, the edge features are designed as a
32-bit context event vector. The vector is mapped to contain
information regarding context type, context value, job ID,
context time and device ID.

The output features are the job priorities extracted from
each MSG node. The choice of predicting the priorities is
motivated by safety considerations. Machine learning models
are generalised approximation models and cannot be relied on
to always produce a correct schedule without a verification
mechanism. We adopt the approach of predicting only job pri-
orities, which are then used to perform the online computation
of schedules. The advantage of this technique over other fast
state-of-art dynamic schedulers such as list scheduling is that
we can benefit at run time, the optimal schedules computed by
high-performance optimisation algorithms such as GA at design
time. The machine learning model for scheduling is attained by
learning the schedules generated by the GA and then deploying
it for online priority prediction.

2) Machine Learning models: The proposed architecture is
not limited to the use of a fixed machine learning model. Nev-
ertheless, this work explores three machine learning models,
RFC, ANN, and E/D NN. Since the scope of this work is not
intended to deal with specific machine learning algorithms, we
only briefly describe them below with corresponding references
that point to more details regarding each algorithm.
• Random Forest Classifier is an ensemble learning method

and a Supervised Machine Learning Algorithm that is
used widely in classification and regression problems. The
algorithm is based on the creation of multiple decision
trees from bootstrap samples of the entire dataset and
the splitting in each decision tree can be performed using
minimum Gini Index or minimum Information Gain [13].
The Gini Index/Information Gain measures the number
of times a random variable is incorrectly computed. The
final result of the Random Forest is determined based on
the majority vote predictions from each decision tree (in
the case of classification) or by computing the average
of the predictions from each decision tree (in the case of
regression).

• Artificial Neural Network trains a model to perform
prediction by reducing the error in the network. The
network digitally mimics the human brain and consists
of interconnected nodes (neurons) following the forward
and backward propagation. The nodes in a neural network
are arranged sequentially in layers (input layer, hidden
layer(s) and output layer). These neurons in subsequent
layers are densely connected but not within the same layer
(i.e. output from one layer behaves as an input to the
next layer). During forward propagation, the weighted
sum of inputs are sent through the network. During back-
propagation, the error computed by the output layer will
be traversed back to the network using Gradient Optimiser
Procedure to minimise the error [14].

• Encoder/Decoder Neural Network trains a model to re-
construct data from a condensed encoded representation
and ignores the noise in the data. The architecture of
E/D NN is almost similar to the ANN architecture with a
slight variation. The algorithm has two main components,
such as the encoder which encodes the input vector into a
reduced vector space and the decoder which is responsible
for reconstructing the information from the encoded vector
space. This algorithm is useful for optimally compressing
the data in a simple linear function and complex non-
linear function [15]. Therefore, it is utilized in various ap-
plications such as dimensionality reduction, and anomaly
detection.

B. Run time

During run time, a time-triggered system switches schedules
in response to the occurrence of a context event. The new
schedule is the one which factors in the adaptation, such that
the system responds to the changes presented as context events.

When a context event occurs, the trained model is used
to predict the new schedule. The model makes prediction by

Context
Model

Platform
Model

Application
Model

Meta-Scheduler

N0

N1 N2

MSG

Inputs

Generate

Dataset

AI-based Algorithms
(RFC, ANN, E/D NN)

 Feature Extraction
& Mapping

 Model Training

Current Schedule
(N0) Context Event

Node Feature
Extraction

AI-based Algorithms
(RFC, ANN, E/D NN)

Reconstruction &
Safety Check

Modified Schedule

Inputs

 Feature Extraction
& Mapping

Temporal Priorities

Output

DesignTime RunTime

Schedule
Reconstructor

Figure 2: Proposed Model[16]

taking as input the current active schedule and the context
event which occurred. The current schedule is passed through a
feature extraction process before being loaded into the model.
The trained model predicts the priority of each jobs which is
then used to reconstruct the schedule. The schedule is also
verified before a final output is presented for utilisation.

V. EVALUATION SETUP

We evaluate our contributions using three machine learning
algorithms; RFC, ANN, and E/D NN. The experimental setup
is carried out in three steps.
• Firstly, data generation and analysis are carried out.
• Secondly, the machine learning model is set up, and hyper-

parameter tuning is performed.
• Thirdly, the prediction of the target values and evaluation

of the machine learning models are performed.

A. Data generation and analysis

Data generation is carried out using Algorithm 1. We gen-
erated the MSG with an example platform model shown in
Figure 3, and it consists of 3 example routers (R1 - R3) and
6 processing elements (PE1 - PE6). An application model is
created for five different job sizes; 15-jobs, 20-jobs, 30-jobs,
40-jobs, and 60-jobs. The meta-scheduler algorithm is deployed
for the different workloads using one platform model. The
different workloads result in diverse input feature sizes. For
example, a job size of 60 requires 1233 input feature variables,
from which 1200 are schedule features, 32 are the edge features,
and 1 is the node centrality; where each job has an identification
number, worst case execution time, parents, children, deadlines,
message size and route included as features. However, a job
size of 20 requires 513 input feature variables; 480 schedule
features, 32 edge features, and one node centrality. These
features are shown and explained in Table I. The size of the
dataset is 16,384 samples for each of the job-size.

For each of the generated schedules in the MSG, we extracted
the temporal priority of the jobs to get the output features.

R1 R2 R3

PE1

PE2

PE5

PE6

PE3

PE4

Figure 3: Experiment Platform Model

Afterwards, the dataset is analysed for missing values. There
was no further action taken since there were no missing values
found. A univariate analysis is performed on the data set to
understand the data distribution and range variation and check
for outliers. Consequently, the results for some of the features
with zero variance were dropped. These features include the
job id, msg id, msg size and router indexes. Finally, one-hot
encoding is performed for the target variables, and the dataset
is split into 80% training sets and 20% test sets.

B. Modelling and Hyper-parameter Tuning

The dataset independently uses the machine learning algo-
rithms (Artificial Neural Network, Random Forest Classifier
and Encoder/Decoder Neural Network) to create robust models
and train the model to predict the output features. Apart
from the input and output feature size, which corresponds to
different job sizes, the structure/architecture of the machine
learning models are fixed for different job sizes. We evaluate
the prediction performance of the model across different job
sizes.

The Scikit-Learn (Sklearn) python library [17] is used for the
Random Forest Classifier model, with a maximum depth of 10,
a minimum sample leaf of 5, a max feature of 150, and 50 trees.
These parameters were attained using the ”GridSearchCV”
class.

The TensorFlow library is used to implement the ANN and
the E/D NN. We used the Sequential class to create a fully
connected (dense) ANN. Three hidden layers are configured
with 35, 18, and 10 neurons for the first, second, and third
layers, respectively. These neuron sizes and the number of
layers are selected based on the results from multiple trials.
The input and output sizes are based on the number of job-
size selected, as explained above. A learning rate of 0.001 is
configured, and the batch size is set to 128. For the E/D NN, an
encoding dimension of 64 is selected as optimal after multiple
trials.

C. Prediction and Performance

Each model predicts the output feature variables for the test
dataset (i.e. the temporal priorities of each job). The predicted
values are compared with the actual values of the test dataset
to measure each model’s performance. The implementation is

evaluated using two performance metrics; overall accuracy of
the model prediction and the model complexity.

VI. RESULTS AND DISCUSSIONS

The hyper-parameters explained in section V are tuned such
that neither models have overfitting or underfitting. The loss
function is computed to find the best fit model for the ANN
and E/D NN models. It is the distance between the actual
and predicted output of the algorithms. After 200 epochs, a
minimum loss value of 0.05 is attained for the ANN model.
Furthermore, after 100 epochs, a minimum loss value of 0.01
is attained for the E/D NN model.

The result of the experiment for the different models (RFC,
ANN, E/D NN) is presented in Table II. The columns of the
table show the number of jobs, the input and output feature
size, complexity, and corresponding accuracy of the models.
The corresponding values for the input and output features of
these job sizes are common across all the models.

The model complexity is used to identify how challenging
it is to learn from the data. The model complexity is evaluated
using the number of parameters used to train the model. The
more the number of parameters in an algorithm, the more
chances of model overfitting. Therefore, if two models fit the
data equally well, a model with lower complexity will be given
higher precedence. Figure 4 compares the complexity values of
RFC, ANN, and the E/D NN against different job sizes.

15 20 25 30 35 40 45 50 55 60

104

105

Number of Jobs

M
od

el
C

om
pl

ex
ity

RFC
ANN

E/D NN

Figure 4: Complexity comparison of RFC, ANN, and E/D NN

We define the complexity of the RFC as the number of splits
performed to build the entire random forest.

complexityRFC = ((2d+1)− 1) ∗m (1)

Where m is the number of trees in the random forest, and d is
the maximum depth of each tree

Model No. of Jobs Input Feature Size Output Feature Size Complexity Accuracy

Random
Forest
Classifier

15 339 180 102,350 95.33%
20 513 300 80.39%
30 609 690 77.25%
40 873 1320 82.34%
60 1233 3120 60.94%

Artificial
Neural
Network

15 339 180 11,043 86.86%
20 513 300 16,178 85.94%
30 609 690 22,953 83.60%
40 873 1320 35,798 81.23%
60 1233 3120 63,998 81.05%

Encoder
/Decoder
Neural
Network

15 339 180 26,740 98.39%
20 513 300 41,516 96.36%
30 609 690 71,410 94.84%
40 873 1320 123,176 92.47%
60 1233 3120 255,536 87.67%

TABLE II: Detailed performance evaluation of the models

The complexity of the RFC model remains constant at a
value of 102350, which is because the input/ output vector
size does not affect the complexity computation. In RFC, it is
only the number and depth of the trees that have an impact on
the complexity computation. However, the model complexity
increases for the ANN and E/D NN model as the number of
jobs increases, even though there is no change in the model
structure. The increment in complexity is because the input
and output of the neural networks are adapted to accommodate
different job sizes.

The accuracy context is accomplished by comparing the
actual and predicted test data in a loop. The accuracy metric is
considered because the number of samples is evenly distributed
among classes. The accuracy in this work is defined using
Equation VI.

accuracy =
(TP + TN)

(TP + TN + FP + FN)
∗ 100 (2)

Where,
TP = Number of 1’s that are correctly predicted,
TN = Number of 0’s that are correctly predicted,
FP = Number of 1’s that are misclassified,
FN = Number of 0’s that are misclassified

Figure 6 shows a plot of the model accuracy against the
number of jobs. It is observed that the E/D NN outperforms
both RFC and ANN. The highest accuracy was attained across
all job sizes. Nevertheless, there is a decrease in accuracy as
the number of jobs increases. The decrease in accuracy reflects
the increasing model complexity and the fixed model structure.

Similarly, the accuracy of the ANN model also reduces
with the increasing number of jobs. The decrease in accuracy
is not as much as both E/D NN and RFC. The decreasing
accuracy for ANN ranges from 86.86% to 81.05%. In contrast,
the decreasing accuracy for E/D NN ranges from 98.39% to
87.67% and RFC from 95.33% to 60.94%.

The RFC performed more than the ANN for small job sizes
but is the most unstable model with varying job sizes. For
this reason, it can be drawn that the RFC does not provide a
desirable generalized model for the meta-scheduling application
when the model structure is fixed.

15 20 25 30 35 40 45 50 55 60

60

70

80

90

100

Number of Jobs

M
od

el
A

cc
ur

ac
y

(%
)

RFC
ANN

E/D NN

Figure 5: Accuracy comparison of RFC, ANN, and E/D NN

The outputs of the machine learning algorithms are used as
inputs and inserted into the reconstruction model as previously
mentioned. The reconstruction model outputs full schedules
based on the predicted priorities. Figure 6 below shows an
example run of 16484 schedules, each schedule has it’s slack
context event run in random time throughout the schedule,
causing a parameter refered to as reconstruction percentage; to
further illustrate, assume context event occurrence in the middle
of a schedule run. The result would be 50 % of the schedule is
reconstructable, the other 50 % is fixed since it already occured
and the past cannot be change. Each algorithm is tested over
the samples to generate output predicted priorities and then run
through the reconstructor to generate complete schedules.

VII. CONCLUSION

This work proposes a machine learning-based architecture
solution to solve the issue of operating meta-scheduler in run-
time and solve the problem of hugging resources and state
space explosion. Machine learning is exploited to predict the
temporal job priorities, after which schedules are reconstructed.
This approach provides a way for meta-schedulers to predict

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

220

240

260

280

Reconstruction percentage (%)

M
ak

es
pa

n

RFC
ANN

E/D NN

Figure 6: Makespan comparison between reconstructed sched-
ules generated from each inference

schedules that are required for adaptation, but not covered in the
schedules generated using a pre-defined horizon. Furthermore,
we investigate the performance of Random Forest Classifier
(RFC), Artificial Neural Network, and Encoder/Decoder Neural
Networks (E/D NN) in the meta-scheduling framework. The
investigations are based on different job sizes to study how
our proposed models perform with the different workloads. The
complexity of RFC for a given model remains fixed even as the
scheduling problem increases. ANN performs better than E/D
NN in terms of complexity. However, poor accuracy is observed
in RFC when predicting the temporal priorities for different
workloads in the multi-schedule graph. Better accuracy results
are observed for E/D NN than a typical ANN.

ACKNOWLEDGEMENT

One of the authors; S.Alshaer would like to thank the
German Academic Exchange Service (DAAD) for funding his
Phd studies allowing his contribution to this paper. In addition,
the authors would like to acknowledge the contributions of
Uni siegen’s Omni Cluster for the allowing the data generation
process.

REFERENCES

[1] R. Obermaisser, H. Ahmadian, A. Maleki, Y. Bebawy,
A. Lenz, and B. Sorkhpour, “Adaptive time-triggered
multi-core architecture,” Designs, vol. 3, no. 1, p. 7, 2019.

[2] P. Muoka, D. Onwuchekwa, and R. Obermaisser, “Adap-
tive scheduling for time-triggered network-on-chip-based
multi-core architecture using genetic algorithm,” Electron-
ics, vol. 11, no. 1, p. 49, 2021.

[3] K. Vissers, “Versal: The xilinx adaptive compute ac-
celeration platform (acap),” in Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2019, pp. 83–83.

[4] B. Sorkhpour, “Scenario-based meta-scheduling for
energy-efficient, robust and adaptive time-triggered multi-
core architectures,” Ph.D. dissertation, Universität Siegen,
2019. [Online]. Available: https://dspace.ub.uni-siegen.
de/handle/ubsi/1471

[5] Z. Zang, W. Wang, Y. Song, L. Lu, W. Li, Y. Wang,
and Y. Zhao, “Hybrid deep neural network scheduler for
job-shop problem based on convolution two-dimensional
transformation,” Computational intelligence and neuro-
science, vol. 2019, 2019.

[6] C. Zhong, H. Jia, H. Wan, and X. Zhao, “Drls: A deep
reinforcement learning based scheduler for time-triggered
ethernet,” in 2021 International Conference on Computer
Communications and Networks (ICCCN). IEEE, 2021,
pp. 1–11.

[7] F. Jiang, K. Wang, L. Dong, C. Pan, and K. Yang,
“Stacked autoencoder-based deep reinforcement learning
for online resource scheduling in large-scale mec net-
works,” IEEE Internet of Things Journal, vol. 7, no. 10,
pp. 9278–9290, 2020.

[8] M. Melnik and D. Nasonov, “Workflow scheduling using
neural networks and reinforcement learning,” Procedia
Computer Science, vol. 156, pp. 29–36, 2019.

[9] Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, and
O. Terzo, “Machine learning and optimization for pro-
duction rescheduling in industry 4.0,” The International
Journal of Advanced Manufacturing Technology, vol. 110,
no. 9, pp. 2445–2463, 2020.

[10] Y.-R. Shiue, R.-S. Guh, and K.-C. Lee, “Development
of machine learning-based real time scheduling systems:
using ensemble based on wrapper feature selection ap-
proach,” International journal of production research,
vol. 50, no. 20, pp. 5887–5905, 2012.

[11] N. K. Gondhi and A. Gupta, “Survey on machine learning
based scheduling in cloud computing,” in Proceedings of
the 2017 International Conference on Intelligent Systems,
Metaheuristics & Swarm Intelligence, 2017, pp. 57–61.

[12] B. Sorkhpour, A. Murshed, and R. Obermaisser, “Meta-
scheduling techniques for energy-efficient robust and
adaptive time-triggered systems,” in 2017 IEEE 4th In-
ternational Conference on Knowledge-Based Engineering
and Innovation (KBEI). IEEE, 2017, pp. 0143–0150.

[13] G. Louppe, “Understanding random forests: From theory
to practice,” arXiv preprint arXiv:1407.7502, 2014.

[14] D. Kriesel, “A brief introduction on neural networks,”
2007.

[15] J. Zhai, S. Zhang, J. Chen, and Q. He, “Autoencoder
and its various variants,” in 2018 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
2018, pp. 415–419.

[16] S. Alshaer, C. Lua, P. Muoka, D. Onwuchekwa,
and R. Obermaisser, “Graph neural network based
metascheduling in adaptive time-triggered architectures,”
International conference on Emerging Technologies and
Factory Automation, vol. 22, no. 1, 2022.

[17] “Scikit-Library random forest,” https://scikit-learn.org/
stable/modules/grid search.html, accessed: 2022-09-30.

