
1

Fault Injection Framework for Assessing Fault
Containment of TTEthernet against Babbling Idiot

Failures
Onwuchekwa Daniel, Obermaisser Roman

University of Siegen, Institute of Embedded Systems, Germany

Abstract—In safety critical communication systems, faulty
nodes could monopolize a channel by transmitting untimely
messages at random intervals and thus resulting in the complete
failure of the entire system. This failure is known as a babbling
idiot failure. This could be costly and catastrophic for safety crit-
ical systems, therefore these failures are avoided in time triggered
communication systems by implementing fault tolerant functions
such as local or central guardians. Research works evaluating the
guardian functionality for real time networks such as Flexray and
TTP have been carried out. This work evaluates the guardian
functionality of the TTEthernet protocol. TTEthernet enforces a
TDMA scheme for time triggered traffic and traffic policing for
rate constrained traffic thereby protecting the network against
babbling idiot failures. However these guardian functionality
was not extensively evaluated. Dependability evaluation by fault
injection on the entire TTEthernet communication system as a
whole has not been extensively studied. In this paper we exploit
a novel fault injection framework to generate babbling idiot
failures for the purpose of verifying TTEthernet implementations
with respect to fault containment. The framework adopts a novel
cut-through approach abstracting the fault injector from both the
end systems and switches, thereby facilitating portability and
ease of use. This work introduces a fault injection framework
to effectively verify babbling idiot fault tolerance of TTEthernet
hardware implementations. In addition, it provides a means to
evaluate the effect of various network faults on applications
running on top the protocol. Test results carried out indicate
the effect of babbling idiot messages on the latency and jitter of
traffic over the TTEthernet network.

Index Terms—Fault tolerance; Fault Injection; Fault contain-
ment;

I. INTRODUCTION

OVER the last few years there have been increasing
interest and developments towards the extension of

legacy Ethernet to support safety critical systems. Safety
critical applications are increasingly being used in the military,
aerospace, medical, automotive and railway industry. The
communication requirements of providing real time and safety
critical features over Ethernet is the basis for protocols such
as TTEthernet and Time Sensitive Networking (TSN). The
aforementioned protocols provide different levels of quality of
service (QoS) and a synchronized global time service. They
are designed to provide both fault tolerance and determinism
on legacy Ethernet. The features added by these protocols to
the legacy Ethernet extend its suitability for mixed critical

applications, providing disparate quality of service for the
traffic classes defined in the protocol. Inherently by design
these networks use policing and channel redundancy to pro-
vide protection against babbling idiot failures. TTEthernet is
standardized as AS6802 [1] and the TSN [2]–[5] group of
standards is currently in progress for standardization. Due
to the attractive features provided by these protocols, it is
expected that hardware implementations from several vendors
would reach the market. Therefore the need for verification
and validation at a physical level is essential to increase the
confidence placed on a dependable product.

Reliability measurement relies on controlled fault injection
experiments that are able to observe the behavior of a system
under the effect of faults. Fault injection thereby provides
the platform for fault containment assessment, test of error
handling and fault tolerance of a system, and the assessment
of solutions to improve dependability. Injecting babbling idiot
failures (BIFs) can be used to accelerates the evaluation
of the fault containment of a network. A babbling idiot is
characterized by the transmission of arbitrary messages at
random points in time. A faulty node that monopolizes the
common channel by sending messages at erroneous points in
time is perceived to have a babbling idiot failure [6]. This
failure mode has the potential to cause a complete system
failure by disrupting communication between end systems
operating correctly. A babbling idiot phenomenon impedes
the fulfillment of real time and safety critical requirements by
delaying or causing the loss of other messages. In safety criti-
cal systems BIFs could result to catastrophic consequences.
BIFs are caused primarily by the node and can originate
either from the end system hardware or software. A hardware
babbling-idiot occurs when the failure is caused by the direct
consequence of a hardware fault. A software babbling-idiot
takes place when the fault originates from the application
software (e.g a bug in the code or human factor such as a
malicious attack). Time-triggered protocols could also take
advantage of channel redundancy to overcome babbling-idiot
failure. The deterministic transmission of messages on the
replica is used to override the hardware babbling-idiot fault
[7]. TTEthernet also uses the priori knowledge about the
permitted temporal behavior to block untimely messages.

Considerable research works on babbling idiot protection
for real-time networks were carried out in [6]–[8] using bus
guardian functionality to tolerate BIF in FTDM, FlexCAN
and earlier TDMA-based communication respectively. The978-1-5386-2542-2/18/$31.00 c© 2018 IEEE

2

evaluation of fault containment with respect to BIFs was also
evaluated by fault injection in Flexray-based networks [9].

However to the best of our knowledge there have been no
extensive academic research on injecting physical faults into
TTEthernet network. There is no existence of an available and
suitable framework for evaluating the protocol implementa-
tion.

In this work our focus is on evaluating the fault containment
of TTEthernet against BIF. In addition the fault injection
framework was designed in a generic manner to be suitable
for TSN. We designed a fault injection framework composed
of a fault injector capable of injecting BIFs to emulates their
occurrence on an actual end system. The framework also has
the capability of injecting and observing other network faults
such as omission, corruption, delay and masquerading but
these are not in the scope of this paper. The framework hides
the fault injector module from the network participants (end
systems and switches). It is connected to the network under
test in a cut-through paradigm, eliminating the necessity to
modify the software or hardware of the TTEthernet network
participants for the purpose of fault injection. This makes the
framework easy to use and portable without requiring any
modification on the device to be validated.

This paper is composed of 5 sections. Section 2 describes
the TTEthernet protocol operation, and section 3 presents
the babbling idiot injection framework. The experimental
organization and results are presented in section 4. Section
5 gives the conclusion of the paper.

II. TTETHERNET PROTOCOL

TTEthernet is a fault-tolerant communication protocol that
extends the legacy Ethernet (IEEE 802.3) to provide reliability
and determinism for safety critical applications. By using a
decentralized clock synchronization on a switched network,
TTEthernet enables message transmission of time triggered
frames with reduced jitter. Determinism with strict guarantees
is provided through a fixed schedule for the traffic over TTEth-
ernet [10]. TTEthernet was standardized as SAE AS 6802 in
2011. A TTEthernet network is composed of end systems,
switches and links. Figure 1 depicts an example of a redundant
setup for a TTEthernet network consisting of 4 end systems
and 4 switches. As shown in Figure 1, TTEthernet provides
the facility to transmit frames with redundancy. For example
a message sent from end system 1 to end system 4 is
duplicated and travels via two channels (l0 − l2 − l4 and
l5 − l7 − l9). The receiving end system 4 picks one of the
transmitted valid frame and discards the other frame.

Three traffic types, namely time-triggered (TT), rate con-
strained (RC) and best effort (BE) messages are exchanged be-
tween end systems through the connected links and switches.
The classification of messages transmitted over the TTEthernet
network in decreasing priority order for scheduling, are TT,
RC, and BE traffic. The end systems and switches participate
in a transparent clock synchronization mechanism. Synchro-
nization messages are realized using protocol control frames
(PCF). The end systems and switches can be configured as
synchronization masters (SM), compression masters (CM) or

Fig. 1: Example of a redundant TTEthernet setup.

Fig. 2: Example of a redundant TTEthernet setup [1].

synchronization clients (SC). The synchronization algorithm is
performed in two steps [11]. In the first step the end systems
configured as SMs initiate the synchronization algorithm by
sending PCFs containing their local time to the compression
masters (usually switches) and each compression master pro-
duces a new PCF called compressed PCF. In the second step
the compressed PCFs are sent by all CMs to SMs and SCs. SCs
are only recipients of the compressed PCFs, they do not send
PCF frames. Switches and end systems can be configured as
SCs. The synchronization service provides a global notion of
time amongst all network participants. Having established this
global time, periodic time slots are allotted in a predetermined
schedule for the transmission of TT messages.

Schedules for the reception and transmission of TT frames
are defined offline at development time, providing temporal
isolation. A TT frame is discarded when it arrives outside
the acceptance window. This mechanism is called temporal
firewall [12]. The RC traffic conforms to the ARINC 664p7
specification [13], and the BE traffic conforms to the legacy
Ethernet operation. The combined operational principle of
fault tolerant clock synchronization in combination with TT
interaction and the ARINC 664p7 RC operational principle on
top of legacy Ethernet make up the TTEthernet SAE AS6802
standard. This is illustrated in Figure 2 depicting the robust
bandwidth partitions that accommodates the three network
classes TT, RC and BE [1].

The priori knowledge about the permitted timing of TT
and RC traffic provides protection against BIFs. Frames that
are received outside the pre-configured acceptance window
are discarded. Likewise the traffic policing functionality de-
scribed in [13] provides protection against BIFs based on

3

the configuration. One frame per bandwidth allocation gap
(BAG) is expected and if an extra frame is found inside a
giving BAG it is discarded. In addition, there is the concept
of jitter which in ARINC 664p7 specifies the time window
around BAG, measured from last frame reception in which a
frame is accepted. Frames that arrive outside maximum jitter
bounds (in relation to BAG interval) are also discarded. The
switch discards frames that do not meet the defined BAG and
jitter requirement specified by the standard, by implementing
a policing function.

TTEthernet addresses collision conflicts between frames by
assigning priority to each frame. Although the SAE 6802
standard does not mandate the use of a specific priority
scheme, it however recommends the decreasing order : PCF,
TT, RC, BE [1]. Priority assignment resolves collision before
the start of a transmission, but extra mechanism is needed if
a low priority message is already transmitting when a higher
priority message is ready for transmission. Three methods [11]
that address these conflicts are described as follows:

• Preemption: If a high priority message arrives a switch
when a low priority message is being transmitted, the low
priority message is halted. The switch then establishes
a minimum silence and then transmits the high priority
message at the time slot specified in development time.

• Timely block: Considering that the switch knows in priori
the arrival time for the high priority message, the switch
will not forward any message at these time slots, in
order to ensure that the high priority frame is transmitted
without delay.

• Shuffling: If a low priority message is transmitting when a
higher priority message arrives, the low priority message
is allowed to finish before the higher priority frame is
transmitted. Shuffling presents an optimal solution from
an utilization point of view since it does not truncate
frames nor block the outgoing ports of low priority
message. However the real-time quality is compromised
to achieve shuffling.

A verification and validation framework is required for
communication vendors that offer products implementing this
standard. To verify the functionality and behavior of TTEth-
ernet services, a fault injection framework is required for the
purpose of testing. The babbling idiot framework designed
herein provides the following capabilities:

• Verifying the conformity of a TTEthernet device to the
standard.

• To validate the fault containment coverage of the hard-
ware implementation of TTEthernet.

• To investigate the application behavior in the presence of
BIFs.

III. BIF INJECTION APPROACH

The framework designed herein injects BIFs directly into
the communication link of the TTEthernet network. The fault
injection framework was designed to realize a platform for a
controlled experiment, where the behaviour of the TTEthernet
network is observed in the presence of BIF. The framework
uses a Xilinx field programmable gate array (FPGA) [14]

as the injector. The experiment is controlled from a central
monitoring station. The central monitoring station performs
the following services:

• Collects traffic data over the network via connections to
a parallel network setup.

• Controls the experiment via a UART connection to the
FPGA.

• Loading of configuration parameters.
Data analysis is carried out off-line after the completion of

the experiment.

A. Fault Injector

The fault injector (FI) is implemented using an FPGA.
The FPGA is used to generate frames that emulate frames
generated by a TTEthernet faulty end system. The FPGA
is connected and configured with the parameters of the end
system which it intends to emulate. The three frame classes
of TTEthernet TT, RC, and BE are generated from the fault
injector in an untimely manner from the FPGA. Figure 3
illustrates the internal architecture of the FPGA model for
the fault injection framework. The FI architecture shown here
is part of an ongoing development for a framework capable
of injecting a broader variety of network faults, this is the
reason for the ingress port component shown. The component
FI-IP generates the babbling idiot message. The information
about the frame structure and content that is peculiar to an
emulated end system is stored in the configuration module.
Such information includes the destination address (Constant
field and Virtual link) [1], source address, frame size, sample
payload and activation time. The generated frames exit via the
egress port into the network.

Fig. 3: Internal Architecture of BIF Injection Framework.

B. Fault Models

The babbling idiot failure mode is emulated herein by
implementing a random interval between two consecutive
frames. The time interval between two consecutive frames is
known as the inter frame gap (IFG). Therefore by making the
IFG a random variable, frame transmissions are performed in
an untimely manner. Considering the IFG (L) as a positive
random variable in range 0 to K, where K is configurable
positive integer denoting the maximum value that L can attain.
This can be expressed as 0 < L ≤ K.

The FI-IP module in Figure 3 is used to implement a
random function for the IFG. Figure 4a illustrates the random
interval between two consecutive TT traffic. During a Golden
Run (GR) scenario, TT frames are transmitted at constant

4

periodic intervals (tp). GR describes the experiment when no
fault is injected. Therefore L would be constant and equal to
tp. However L becomes a random variable when the BIF is
activated. Figure 4b illustrates that tp assumes a random value
tr that changes at random to emulate the untimely generation
of frames.

(a) TT frame periodic interval under normal operation.

(b) TT frame illustrating random time interval when
babbling idiot is activated.

Fig. 4: Inter frame gap illustration between TT frames.

C. Configuration Parameters
Information regarding the frame structure and content are

loaded into the fault injection configuration module shown in
Figure 3. Considering that the FPGA assumes the position
and functionality of an emulated end system, it is required to
preconfigure the FPGA with the same parameters of the emu-
lated end system. For example the virtual link identifications
(VLIDs), source address and payload size are preconfigured
on the FPGA.

D. Readout Module
A parallel network was setup to monitor and observe the

system under test. All frames transmitted over the network are
captured using a high speed network accelerator card (NAC)
[15] . The frame contents are viewed on a monitoring end
station running the Wireshark application [16]. Observation
probes are positioned such that latency, jitter and frame
delivery can be observed and analyzed. The generated traffic
is captured before entering the switch and if these frames are
relayed by the switch they are also captured. By using the
Xilinx’s Integrated logic analyzer (ILA) [17], all traffic on
the link associated with the FPGA can be observed. Figure
(5a) shows multiple frame captures using the ILA core in the
FPGA, the row “data out” displays the frames generated from
the FPGA. The row “enable” shows the signal covering the
transmission duration. The “Error” row would signal if there
is an error in the message during transmission. Figure (5b)
shows a magnified view further illustrating the frame content.
The observed frame format represents the GMII-RGMII frame
handling for a 100 Mbits/s link. In this format each byte is
split into two nibbles, where splitted nibbles are duplicated
within the block to form a byte and transmitted in an inverted
order. In Figure (5b) for example, the start frame delimeter
(SFD) is captured as two bytes x“55” and x“dd”. These values
corresponds to a single byte x“d5”.

IV. EXPERIMENTAL ORGANIZATION AND RESULTS

A. Experimental Setup
The experiment observed the behavior of a TTEthernet

switched network connected with four end systems using

(a) ILA view of generated frames.

(b) ILA magnified view to highlight content.

Fig. 5: Vivado ILA tool.

100Mbits/s links. Figure 6 illustrates the network under test,
the network was configured with five virtual links (VL1-
VL5). VL1 and VL2 were configured for TT traffic while
VL3 to VL5 were configured for RC traffic as illustrated.
In Figure 6 the direction and type of traffic on the VLs are
illustrated with the dotted arrows. The arrows associated with
each virtual link point in the direction of the traffic. Messages
originate from a single sender but can be received by multiple
receivers, as shown in the case of VL1 and VL2. Four end
systems configured as synchronization masters are connected
to a TTEthernet switch configured as a compression master.
Passive network taps are placed in the positions A, B, C and D.
The network taps are connected to a central monitoring station.
All traffic through the links is sniffed in a passive manner
using the network taps. The monitoring station is equipped
with commerical off-the-shelf (COTS) NACs that receive all
traffic from the network taps. Wireshark tool is used to collect
all the captured packets. Computations of latency and jitter
of different virtual links are handled offline via a custom
C++ program, designed specifically for analysing TTEthernet
traffic.

Fig. 6: Experimental setup for Babbling Idiot Fault injection.

The FPGA is used to inject untimely messages on VL1 (TT)
and VL4 (RC) with total frame size of 165 bytes. Best effort
messages are also injected in the background according to a
random interval. The scenario in figure 6 is such that message

5

transmission from ES1 is emulated for a case of BIF. On
startup the FPGA acts completely as a cut-through interface.
This cut-through approach introduces a constant delay of 2 µs
to the usual traffic over the channel. When the BIF is activated,
ES1 is cutoff and messages from it are emulated on the
FPGA, except that these messages take an untimely interval,
emulating the babbling idiot failure. Information regarding the
virtual links of ES1 are preloaded into the FPGA on startup.

The frame size and BAG for each application running on the
virtual links were configured for the experiments as follows:

• Configured with a payload size of 100 bytes indicated
herein as 100B.

• Configured with a BAG of 15000 µs.
The above listed configurations are set on each VL. Firstly

we obtained latency, jitter and number of frame loss for a
GR scenario. These initial measured GR values are used to
establish a base line that makes it possible to ascertain the
effect of faults on the network when BIF is injected.

B. Results and Discussion

The experimental observation for frame loss, average la-
tency and Jitter on VL2, VL3, and VL5 are shown in Table
I. Values for GR scenario were first recorded before the
activation of BIF on VL1 and VL4.

TABLE I: Experimental Measurement - Golden run scenario
and BIF injected with a payload size(100B) and BAG (0.015s)

- VL Avg.Latency max. Jitter Frame Loss
GR VL2(ES2-ES3) 204.626 µs 1 µs 0
BIF VL2(ES2-ES3) 210.96 µs 89 µs 2
GR VL2(ES2-ES4) 204.659 µs 1 µs 0
BIF VL2(ES2-ES4) 210.498 µs 88 µs 3
GR VL3(ES4-ES1) 19.7907 µs 8 µs 0
BIF VL3(ES4-ES1) 19.9522 µs 17 µs 2
GR VL5(ES2-ES4) 19.7551 µs 7 µs 0
BIF VL5(ES2-ES4) 28.9759 µs 181 µs 1

1) Average Latency: The experiments considered latency
in the context of end to end delay between two nodes. It
expresses the duration taken by frames to get from one end
system to another one. The network schedule was configured
with a period of 20 ms for TT traffic, and a BAG of 8 ms for
RC traffic. Although the application was configured to send
all messages with a BAG of 150 ms, these messages only
leave the TTEthernet network card according to the predefined
network schedule. When BIF is activated the average latency
on VL2 (TT) is slightly increased. For the RC VLs, the
increase in average latency when BIF is triggered is more
pronounced compared to TT VL. These differences in average
latencies are 6.334 µs and 9.2208 µs for TT VL(ES2-ES3) and
RC VL(VL2-ES4) respectively.

2) Jitter: Increased jitter was observed across all VLs when
BIF is activated. Under GR scenario, the jitter observed across
TT VLs was bounded at 1 µs. To accomplish a detailed
evaluation on the effect of BIF on TTEthernet network, it is
important to know what conflict resolution (between TT and
other traffic) method is implemented on the switch. This has
an impact on the handling of traffic priority by the switch. The
switch in this experiment utilized the shuffling mechanism [1]

Fig. 7: Virtual Link 2 (End system 2 to End system 3)
observation for Jitter.

Fig. 8: Virtual Link 2 (End system 2 to End system 4)
observation for Jitter.

for conflict resolution. Due to the store-and-forward principle
and unfragmented frame transmission implemented by the
shuffling mechanism, TT traffic can be delayed by the RC
traffic resulting in a pronounced jitter. However this jitter is
bounded as it does not exceed the transmission duration for a
single frame.

BIF was injected on VL1 (TT) and VL4 (RC) with a frame
size of 165 bytes. In a 100Mbit/s link, a byte is sampled in a
bridge every 80 ns. Therefore the switch takes 13.2 µs in this
experiment to relay a complete BIF message. Since shuffling is
implemented in the switch, if there is an ongoing transmission

Fig. 9: Virtual Link 3 (End system 4 to End system 1)
observation for Jitter.

6

Fig. 10: Virtual Link 5 (End system 2 to End system 4)
observation for Jitter.

of an RC message by the switch when a TT frame arrives,
the TT frame is delayed by a maximum of 13.2 µs plus the
IFG and switch processing time. The shuffling method is a
tradeoff between optimal bandwidth utilization and real-time
quality. Real-time quality is degraded by the observed bounded
jitter, however bandwidth is utilized efficiently as there are
no truncated frames. Compared to TT VL, the jitter on RC
VL5 is much more significant. The buffer size specification
of the switch plays a major role on how RC messages are
handled. Flooding the switch with BIF has more significant
consequences as the buffer limit is exceeded resulting in more
pronounced jitter for RC traffic.

Figure 7 and Figure 8 illustrate a plot on the number of
frame samples against latencies observed in the experiment
for VL2 (ES2-ES3) and VL2 (ES2-ES4) respectively. The
deduced jitter from the plot is bounded within a maximum of
89 µs for ES2-ES3 and 88 µs for ES2-ES4. The jitter effect
on the TT virtual link under BIF is affected by the frame
size of the BIF message. The RC VLs illustrated in Figure
9 (ES4-ES1) and Figure 10 (ES2-ES4) are not only affected
by the frame size of the BIF message. They are in addition
affected by the frequency of frame generation and size of the
configured switch buffer. As a result the jitter observed for the
RC VL was disproportionate.

3) Frame loss: Frame loss was recorded for both TT and
RC traffic under BIF. The arrival of frames to a receiving
end system outside an acceptance window that was specified
a priori are discarded. In addition frames that did not meet the
bandwidth allocation gap (BAG) requirement of ARINC 664
were also discarded. Both RC VLs and TT VLs were prone
to frame loss under BIF.

V. CONCLUSION

A fault injection framework capable of evaluating the fault
containment of TTEthernet implementations against babbling
idiot failures was developed in this work. The framework
utilized COTS devices in establishing a monitoring station
and an FPGA connected according to a cut through paradigm
to inject babbling idiot faults. Experimental results obtained
demonstrated the use of the framework in providing sta-
tistically useful data for the evaluation of TTEthernet fault
containment against babbling idiot failures.The framework

provided a platform to observe the impact of BIF on RC
and TT communication. It was observed that an end system
which generates babbling idiot messages on a given virtual
link could have a bounded effect of jitter (up to 123 µs
for maximum frame size) on a TT virtual link sharing the
same switch due to shuffling. Shuffling thus affects the fault
containment of TT communication under the presence of BIF.
Timely blocking however will be a recommended option to
decrease the jitter for TT communication. The framework thus
provide the platform to apply direct measurement necessary
for quantification of availability and reliability of TTEthernet
from different vendors.

ACKNOWLEDGMENT

This work has benefited from funding from the Shift2Rail
Joint Undertaking under grant agreement No. 730830. This
Joint Undertaking receives support from the European Unions
Horizon 2020 research and innovation program. TTTech Vi-
enna played a major role in the provision of hardware and
technical support for the work done in this project.

REFERENCES

[1] SAE, The Time Triggered Ethernet AS6802, Std., 2011.
[2] Timing and syncrhonisation for time-sensitive applications in birdged

local area networks, IEEE 802.1, Std., 2011.
[3] Virtual bridged local area network amendment 14: Stream reservation

protocol, IEEE 802.1 Qat, Std., 2010.
[4] Virtual bridged local area network amendment 12: Forwarding and

queuing enhancement for time-sensitive streams, IEEE 802.1 Qav, Std.,
2009.

[5] Audio Video Bridging (AVB) Systems, IEEE 802.1 BA, Std., 2009.
[6] K. Wang, A. Xu, and H. Wang, “Avoiding the babbling idiot failure in a

communication system based on flexible time division multiple access:
A bus guardian solution,” in 2009 IEEE International Symposium on
Industrial Electronics, July 2009, pp. 1292–1297.

[7] G. Buja, A. Zuccollo, and J. Pimentel, “Overcoming babbling-idiot
failures in the flexcan architecture: a simple bus-guardian,” in 2005 IEEE
Conference on Emerging Technologies and Factory Automation, vol. 2,
Sept 2005, pp. 8 pp.–468.

[8] C. Temple, “Avoiding the babbling-idiot failure in a time-triggered com-
munication system,” in Digest of Papers. Twenty-Eighth Annual Interna-
tional Symposium on Fault-Tolerant Computing (Cat. No.98CB36224),
June 1998, pp. 218–227.

[9] V. Lari, M. Dehbashi, S. G. Miremadi, and M. Amiri,
“Evaluation of babbling idiot failures in flexray-based networkes,”
IFAC Proceedings Volumes, vol. 40, no. 22, pp. 399 –
406, 2007, 7th IFAC Conference on Fieldbuses and Networks
in Industrial and Embedded Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1474667016351825

[10] J. Dvok, M. Heller, and Z. Hanzlek, “Makespan minimization of
time-triggered traffic on a ttethernet network,” in 2017 IEEE 13th
International Workshop on Factory Communication Systems (WFCS),
May 2017, pp. 1–10.

[11] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, Time-Triggered
Communication, 2nd ed. Boca Raton: CRC press, 2011, ch. 8 : Time-
triggered Ethernet In R. Obermaisser, Ed., pp. 181–220.

[12] M. Heller, “Scheduling of the ttethernet communication,” Master’s
thesis, May 2016.

[13] ARINC, Aircraft Data Network PART 7: Avionics Full Duplex Switched
Ethernet (AFDX) Network, Std., 2006.

[14] XILINX. (2018) All programmable soc with hard-
ware and software programmability. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

[15] Napatech. (2018) Napatech smartnics. [Online]. Available:
https://www.napatech.com/

[16] G. Combs. (2018) Wireshark. [Online]. Available:
https://www.wireshark.org/

[17] XILINX. (2016) Integrated logic analyzer v6.2 logicore ip product guide.

