
Genetic Algorithm for Scheduling Time-Triggered Traffic in
Time-Sensitive Networks

Maryam Pahlevan1 and Roman Obermaisser2

University of Siegen, 57068 Siegen, Germany
Emails: {maryam.pahlevan@uni-siegen.de, roman.obermaisser@uni-siegen.de}

Abstract— Time-Sensitive Networking (TSN) is introduced
as a series of Ethernet extensions to address strict temporal
constraints of modern mission-critical applications. TSN offers
determinism using global Time-Triggered (TT) transmission
schedules. Most of existing scheduling solutions ignore inter-
dependence of routing and scheduling problems and derive the
design space of system implementations only from scheduling
constraints. This strategy limits the capability of former ap-
proaches to compute a global schedule of TT communication
for several real-time systems. In this paper, we present a
heuristic scheduling approach based on a genetic algorithm.
Our approach combines the routing and scheduling constraints
and generates static global schedules using joint constraints in
a single-step. The number of scheduling possibilities within the
design space that is derived from joint routing and scheduling
constraints increases in comparison to the approaches that only
use the fixed routing. Thereby, the schedulability is improved
by our solution. Our genetic-based approach also considers the
distribution of real-time applications, multicast patterns and
interdependencies of TT flows in the scheduling process. Due
to optimized task binding and resource allocation, the experi-
mental results show a significant enhancement of schedulability,
TT transmission efficiency and resource utilization compared
to the state-of-art solutions.

I. INTRODUCTION

In modern industrial systems, the increasing number of
sensors and computing nodes results in complex network
designs and a high volume of data exchanges over the
communication links. Although Ethernet fulfills the high
demand of bandwidth and the seamless connectivity of
vendor-specific devices, it does not offer real-time capabil-
ities which are essential for cyber physical systems. Time
Sensitive Networking (TSN) [1] is a set of standards that
introduces several Ethernet extensions and a novel schedul-
ing mechanism called Time-Aware Shaper (TAS). TAS uses
time as a correctness criterion instead of a metric for the
performance measurements [2]. This feature enables TAS to
provide determinism, low latency and low jitter for safety-
critical applications.

In TSN networks, a fault-tolerant synchronization protocol
(i.e. IEEE 802.1ASrev [3]) ensures that all devices are
synchronized to a global time and provides the basis for
deterministic TT communication. In addition, each port of
a device dedicates some queues to the TT flows and the
rest is used for the non-TT communication. A TSN capable
device transmits messages according to the Gate Control List
(GCL). The GCL determines at each time instant which
queue is eligible to send out messages. TAS applies the

port’s GCL with respect to the global time. Therefore, it
guarantees that the allocated time slot for a TT flow will
not be occupied with any other message (including other TT
flows and non-TT messages). The port-specific GCL along
with a fault-tolerant clock synchronization enables Ethernet-
based networks to meet strict timing constraints of mission-
critical applications.

In TSN like in other TT protocols, the global schedule of
TT communication is computed off-line due to the complex
nature of the scheduling problem. After that the port-specific
GCLs are calculated using the global schedule. Despite GCL
advantages, the scheduling problem arising from the GCL
synthesis is NP-complete. Therefore, it is hard to come
up with algorithms that are applicable to different network
topologies and scalable to large systems.

To generate a global schedule, both knowledge of the
network topology and the TT flow specifications are re-
quired. A large number of network devices, switches and
links of many Ethernet-based systems results in numerous
possible routes and consequently a tremendous number of
schedule possibilities for each TT flow. The feasibility of
running real-time applications over different end-systems
makes the search space of the legitimate schedules even
bigger. Therefore, the optimization algorithms for the search
space exploration are a key element for the deployment of
TSN. Several works discuss the scheduling problem of time-
triggered networks by reducing the complexity of the prob-
lem using several assumptions. For instance, the majority
of TT scheduling solutions calculate the global schedules
regardless of routing possibilities. In other words, they ignore
the impact of routing on the scheduling constraints and use
fixed routes which are generated separately as an input to
the schedulers. This simplified abstraction of the scheduling
problem (e.g. using fixed routing) may lead to the failure of
the schedule generation, although the system is schedulable
[4]. A few recent works [4], [5] focus on joint routing and
scheduling for the global schedule computation. They all
use the ILP-based approach which is rather slow and not
scalable to solve large scheduling problems. In addition,
these solutions do not consider multicast TT messages, inter-
flow dependencies and distributed real-time applications.

In this paper, we present two different scheduling algo-
rithms: the first one is based on genetic algorithms, while the
second one is based on list scheduling and only a reference
for comparison with the first solution. In contrast to state-



of-art scheduling solutions, our Genetic Algorithm (GA)
generates port-specific GCL imposing routing and scheduling
constraints at the same time. This solution transforms two
separate sets of routing and scheduling constraints into one
set of constraints and solves the scheduling problem consid-
ering multicast communication and interdependencies of TT
flows in a single-step. The main goal of GA is to satisfy the
deadlines, while optimizing the TT transmission makespan
and the overhead of TT communication. To achieve this
goal, GA minimizes the gap between TT time slots and
consequently reduces the number of guard bands that are
introduced before every TT time slot to avoid interference
with other flows. In addition, our solution provides an oppor-
tunity to distribute safety-critical applications over available
end-systems rather than placing them on a certain device.
This approach is beneficial for mission-critical applications
(e.g. driving assistance) that require considerable amounts of
computational power.

In addition to the GA, we develop a heuristic list scheduler
which first finds the shortest paths between all end-systems
and then uses these fixed routes to solve the scheduling
problem. In the experiment section, we apply the proposed
solutions to different sets of TT flows and network designs.
We also compare the simulation results of the single-step GA
with our two-phase list scheduler. The results demonstrate
that GA improves the scheduling capability and transmission
efficiency of TT communication over our list scheduler
considerably.

The remainder of the paper is structured as follows: In
Section II, related work is discussed. Section III introduces
the system model used in this work. Section IV formulates
the scheduling problem of TT communication. The joint
routing and scheduling constraints are defined in Section V.
Section VI describes our GA while Section VII details the
list scheduler, which serves as a reference implementation of
existing scheduling solutions and also as a baseline for the
experimental analysis. In the following section, experimental
results are evaluated. The last section concludes the paper.

II. RELATED WORK

Since time-triggered systems necessitate a global schedule,
in recent years several works addressed the scheduling prob-
lem of TAS which is also introduced in the IEEE 802.1Qbv
[6] extension. In [7], the authors first determine scheduling
constraints of TAS in multi-hop switched networks and
then compute the valid schedule using Satisfiability Modulo
Theories (SMT) and Optimisation Modulo Theories (OMT)
solvers. They also verify that GCL offers deterministic
delivery of TT messages. Pop et al. synthesize the GCL
for each TSN capable device’s port using ILP. This work
computes the global schedule while it allocates resources to
TT flows optimally. The authors in [8] developed a hybrid
genetic algorithm to generate the static schedule table of
TT frames in Time-Triggered Ethernet (TTE) networks. This
work optimizes the number of allocated TT time slots and
consequently improves the transmission efficiency of TTE
communication. All aforementioned solutions, first calculate

the valid routes of TT frames and then use the fixed routing
information for computing the global schedule. As a result,
they neglect the vital role of routing in the scheduling
process.

Smirnov et al. propose a set of Pseudo-Boolean (PB)
constraints to solve routing and scheduling problems of
TT communication in a single-step. Furthermore, this work
employs multi-objective optimization to the design space
deriving from joint routing and scheduling constraints. This
implementation first uses a time-consuming ILP approach
to define the design space from PB constraints. Then, it
applies the NSGA-II optimization algorithm to the explo-
ration model. This solution does not support application-
specific periods for different TT flows which is essential for
TSN deployment. Instead it is assumed that all scheduled
traffic is sent in the same cycle. In addition to this study, the
authors in [5] develop the ILP-based scheduling solution for
the joint routing and scheduling problem and evaluate the
experimental results of different traffic patterns and network
topologies using two performance metrics (i.e. end-to-end
delay and scheduling capability). Due to the ILP-based
scheduling process, the aforementioned solutions are rather
time-consuming specifically for large-scale time-triggered
networks. They also do not consider multicast and inter-flow
dependencies in their experiments.

We develop a fast GA to address the interdependence of
routing and scheduling constraints. This approach computes
the global schedule within reasonable time intervals and
it is scalable to modern industrial networks with an ever
increasing number of elements. Our solution also makes the
distribution of real-time applications feasible using valid task
bindings and resource allocations. In addition to the afore-
mentioned advantages, the GA supports multicast transmis-
sion patterns and inter-flow dependencies which to the best
of our knowledge are not integrated in any TSN scheduling
solution yet.

III. SYSTEM MODEL

In this paper, we model the network topology and TT
flows with two separate graphs: An architecture graph and
an application graph. An architecture graph is presented by
an undirected graph GA (R, El). This graph comprises end-
systems and TSN switches R = ES

⋃
S as vertexes and

the duplex links between them as edges. An application
graph is shown by a directed acyclic graph GC (C, Ef). GC
consists of computational tasks as vertexes and the TT flows
transmitted between the tasks as edges. Since each task can
have multiple successor tasks, this system modeling supports
multicast TT flows as well [9]. Our scheduling algorithms use
the described graphs as inputs. Figure 1 presents an example
of the system model.

The scheduling possibilities of TT communication are de-
rived from mapping the application graph to the architecture
graph. To compute a valid system implementation, first each
computational task is assigned to a certain end-system. As a
next step, the TT messages which are transmitted between a
computational task and the predecessor tasks are mapped to



c1 c2

c3c0

c4

f1

f0

f2

f3

f4

f5

(a) Application graph

es1 sw1

sw0

sw3

sw2

sw5

sw4es0

es4

(b) Architecture graph

Fig. 1: An example of system model

the physical links that connect the sender end-system to one
or multiple receiver end-systems.

In this model, computational tasks are intended to generate
TT messages. Therefore, they can only run on end-systems
whereas TSN switches relay TT messages. It is noteworthy
that the physical links e ∈ El are bidirectional. Therefore,
if a TT frame is traversing a specific link in one direction,
simultaneously another TT message can be transmitted over
the same link in reverse direction. In our system model,
we assume that all TSN switches and end-systems are
synchronized to the global time.

IV. PROBLEM FORMULATION

In TSN networks, switches and end-systems exchange
three types of traffic: TT flows, AVB streams and Best Effort
(BE) messages. Our scheduling algorithms are developed
to generate a valid GCL so that the AVB streams and BE
traffic which do not have strict timing requirements, do not
interfere with the transmission of TT frames. Consequently
our algorithms only compute the static schedule table of TT
messages and non-TT frames (including AVB and BE) are
sent when no TT message is scheduled.

Each TT flow f ∈ Ef is identified by f.sender ∈ C,
f.receiver ∈ C, f.size, f.period and f.deadline. Since
in TSN a TT flow can consist of more than one frame,
f.size is equal to the number of TT frames which are sent
consecutively in one f.period multiplied by the frame’s
length. As TT frames are sent periodically, the f.period
attribute is used to specify the periodicity of a TT flow. The
f.deadline field determines the maximum permissible end-to-
end latency. For simplicity purposes, we assume a TT flow
remains in a TSN capable device just for the processing time
which is computed as follows:

tf.processing = ProcessingRatedevice × f.size
The GCL of each port of a TSN capable device is

determined by our scheduling algorithm and it reflects the
injection time of TT flows routed via that device. The
f.InjecT ime determines when the sender end-system starts
transmitting the TT flow just after execution of corresponding
computational task (c.ExT ime). In order to offer deter-
ministic TT communication in synchronized and scheduled
networks, all port-specific GCLs begin simultaneously and
repeat over the Least Common Multiple (LCM) of all
f.period values called hyper-period.

V. SCHEDULING AND ROUTING CONSTRAINTS

We combine the scheduling constraints definition in [7],
[10] with the routing constraints as follows:

1) Each computational task is assigned to exactly one
end-system. The end-system where the task can run on,
is chosen from the eligible end-systems c.CanRunOn
for that specific task. The network designers provide
this information within the application graph using the
knowledge of application requirements and end-system
capabilities.

∀c ∈ C, es ∈ c.CanRunOn : c.processor = es

2) To eliminate loops, each frame of a TT flow can
pass through a certain node at most once. The f.route
consists of all adjacent links which form the path from
the sender to the receiver. It is noteworthy that f.route
is set to one of routing possibilities between the sender
and the receiver.
li = (u, v) ∈ El : R = {(li, .., li+n), ..., (lj , .., lj+m)}

r ∈ R : f.route = r

3) Each TT flow can be routed through a specific link, if it
can have an exclusive access to the physical link for the
duration of f.TransDelay just after the transmission
starts. The transmission delay of a TT flow on a certain
link is calculated as follows:

li ∈ El : fli.T ransDelay =
f.size

li.bandwidth

It is important to note that we assume a TSN capable
device (including end-systems and switches) dedicates
only one queue per port to TT traffic. Hence, to
eliminate interleaving of different TT flows in a sin-
gle TT queue, the device follows the flow isolation
constraint introduced in [7]. We reflect this constraint
by considering an exclusive access to the egress port
and the attached link for a period of tf.processing +
f li .T ransDelay.
This constraint is applied to all adjacent links in
f.route. For each link, the time interval of exclusive
access is calculated with respect to the period of
tf.processing +f li .T ransDelay on previous adjacent link
within f.route. For minimizing the makespan of TT
applications, we do not permit any gap between the



value of tf.processing + f l.T ransDelay on two subse-
quent links of f.route. This means the buffering of TT
frames is not allowed in our system model and devices
follow the store and forward approach for switching
TT packets.
∀(li, li+1) ∈ f.route :

f li+1 .InjecT ime = f li .InjecT ime+ tf.processing+

f li .T ransDelay

4) In our system model, TT flows are not restricted to
one period and can be transmitted over different cycles.
For this reason, the time interval of exclusive access
on every link of f.route is calculated considering the
periodic accesses of other TT flows which traverse the
same physical links throughout their paths from the
senders to the receivers.

5) Each computational task can start only when the TT
flows that are sent by the predecessor tasks towards this
task are delivered. In other words, the task can start
transmitting TT messages only when the computing
job is executed and all predecessor TT flows are
received. The flow’s end to end delay determines the
time interval between the injection time of flow and
its arrival time at certain destination.
∀f ∈ Ef,∀f ∈ pre(f), c ∈ C, f.sender = c :

f.e2eDelay =
∑

l∈f.route

tf .processing + f.TransDelay

f.InjecT ime+ f.e2eDelay + c.ExT ime

≤ f.InjectT ime

This constraint reflects inter-flow dependencies and
provides an opportunity to transmit TT flows based
on predefined priorities.

6) Each TT flow that is sent by a computational task must
be delivered to the successor task within the flow’s
deadline.
∀f ∈ Ef :

f.InjecT ime+ f.e2eDelay ≤ f.deadline

VI. GA IMPLEMENTATION

The scheduling problem of time-triggered networks can be
solved by combining bin-packing and a genetic algorithm [8].
We introduce a Genetic Algorithm (GA) to generate the valid
schedule with optimized transmission time of TT messages.
To be more specific, the main goal of our GA is to minimize
the makespan of TT communication by optimizing the end-
to-end delay as a measurement metric.

min(max ∀f ∈ Ef(f.InjecT ime+ f.e2eDelay))

A. Individual definition

In GA, a genome builds an individual. Each genome
contains an array of genes. For resource allocation and task
binding, GA needs one gene per task. Each task specific
gene contains all end-system IDs that the task can run on
(i.e. introduced in c.CanRunOn). In addition, each TT flow
is mapped to one gene. The flow specific gene includes the
flow’s routing possibility indexes. Each gene is encoded by
sets of integer numbers.

B. Population initialization

The GA was implemented using GAlib [11] that provides
different genetic algorithms in C++. The GA first initializes
an individual using information derived from the system
model (including GA and GC). Then, it generates an initial
population. In each generation, the GA chooses the indi-
viduals with the best fitness and creates a new population
of individuals using the simple-point crossover operator. As
a result, the best individuals are preserved for the next
generation.

C. Fitness function

The fitness function assigns a fitness score to each individ-
ual. In the GA, the fitness function first computes the global
schedule of each individual and returns the makespan as a
fitness value. After that, the GA evaluates the eligibility of
individuals based on their fitness scores and selects the ones
with the best fitness for creating the next generation.

Algorithm 1 Fitness Function

1: procedure FITNESS(Genome g)
2: makespan← 0
3: Ef.sorted ← sort flows based on interdependencies
4: ∀f ∈ Ef.sorted:
5: ST← f.sender
6: RT← f.receiver
7: ST.processor← p ∈ ST.CanRunOn task’s genes
8: RT.processor← p ∈ RT.CanRunOn task’s genes
9: f.route← r ∈ R using flow’s genes

10: f.InjecTime← find earliest feasible time slot
11: f.arrival← f.InjecT ime+ f.e2eDelay
12: if f.arrival > f.deadline then return infinity
13: RT.startT ime← max(RT.startTime, f.arrival)
14: RT.finishT ime← RT.startT ime+RT.ExTime
15: makespan← max(makespan,RT.finishTime)
16: return makespan

Algorithm 1 presents the GA’s fitness function in more
details. In this function, first we sort the TT flows based
on their interdependencies. For each TT flow in Ef.sorted, the
sender and receiver tasks are assigned to the available end
systems using task-specific genes in a genome. The f.route
is also selected from the possible routes between sender and
receiver using the flow’s genes. For finding all possible routes
we use the multiplication of adjacency matrix approach.



After initialization, the function using constraints (3) and
(4) finds the earliest time instant that the sender task can
access all adjacent links in the f.route exclusively. If the
flow’s injection time violates the constraint (6), it means that
the individual leads to an infeasible system-wide schedule.
Therefore, the function returns infinite as a fitness score to
eliminate inheritance of infeasible individuals to the next
generation. The line 13 corresponds to constraint (5) and
updates the start time of the receiver task accordingly. In
the last line, the function returns the makespan as a fitness
score. The makespan corresponds to the time instant that all
computational tasks are finished. In each generation, the best
solutions (individuals with minimum makespan) are stored
and the new population of individuals in the next generation
is compared to the current best candidate. If the individual’s
makespan is bigger than the current minimum makespan, the
individual will not be carried over to the next generation.
Consequently, the GA converges faster to a feasible global
schedule.

The GA’s objective is to find the global schedule with
the minimum makespan. This optimization process has the
following advantages: 1) The scheduling capability will be
improved, since the transmission time of TT flows is opti-
mized. 2) The optimized makespan leads to more compact
transmission schedules of TT flows. Therefore, the number
of guard bands that is reserved before each TT time slot to
avoid interference with non-TT traffic reduces significantly.
3) This also results in a better bandwidth utilization and
smaller waiting time of non-TT messages which are blocked
due to exclusive TT time slots.

VII. LIST SCHEDULER

We also developed a scheduling algorithm based on list
scheduling [10]. Since our list scheduler (LS) solves the
scheduling problem of TT communication using fixed rout-
ings, we use LS to evaluate GA in terms of schedulability.

c1 c2

c3c0

c4

f1: 35
f4: 24

f5: 40

f0: 15

f2: 12

f3: 4

Fig. 2: An application graph, weight on each edge is Costf

As shown in Algorithm 2, LS first calculates the priority
of each task using the critical path. The task’s critical path
defines the longest path from a predecessor task to the
task according to the communication cost (i.e. Costf =
tf.processing + f li .T ransDelay). For example, in Figure 2 the
critical path of task c4 is shown in dashed-lines and the
priority is set to 59 (i.e. Costf1 + Costf4 ). After that, LS
sorts computational tasks based on their priorities. In line

Algorithm 2 List Scheduler

1: procedure LISTSCHEDULER
2: makespan← 0
3: assign priority to each computational task
4: Cc.sorted ← sort tasks descendingly based on priorities
5: ∀c ∈ Cc.sorted is not scheduled:
6: makespan← Scheduler(c)
7: return makespan
8: procedure SCHEDULER(Task c)
9: if task c is not scheduled and has incoming TT flows

then
10: ∀f ∈ Ef.incoming: Scheduler(f.sender)
11: is pred tasks scheduled← true
12: else if is pred tasks scheduled or task c has no child

then
13: for p ∈ c.CanRunOn do
14: for f ∈ Ef.incoming do
15: c.processor← p
16: f.route← ShortestPath(sender, receiver)
17: f.InjectTime← FindEarliestTime
18: f.arrival← f.InjectT ime+f.e2eDelay
19: if f.arrival > f.deadline then:
20: go to the next end-system
21: c.StartT ime←

max(c.StartTime, f.arrival)

22: makespan← max(makespan,c.StartTime+c.ExTime)
23: return makespan

5, LS schedules tasks from highest priority to the lowest
one. For each task, first the task’s incoming TT flows are
retrieved. If the task does not have any incoming flow or
all predecessor tasks are already scheduled, an available
end-system from c.CanRunOn is allocated to the task.
Then, for each incoming TT flow, the algorithm finds the
earliest injection time using the shortest path between the
sender and the receiver and updates the schedule’s makespan
accordingly. If the flow’s injection time violates constraint
(6), another end-system is assigned to the task and the
same procedure is repeated. The reason is that the previous
chosen end-system which violates constraint (6) leads to an
infeasible solution. If the task needs to receive TT flows from
other computational tasks before it can start transmitting TT
messages (as formulated in constraint 5), LS tries to schedule
all preceding tasks first as is shown in line 10. For instance,
LS specifies the injection time of f0, f1 and f2 before it
allocates a time slot to f3.

To illustrate the difference between GA and LS, we use the
system model in Figure 1. The flow’s communication cost
and periods are given in Figure 2 and Table I respectively.
Table I also shows that LS always uses the shortest paths,
while GA finds the routing that leads to a more optimal
makespan. The Gantt charts in Figure 3 present the global
schedules that were computed by LS and GA. In the Gantt
charts, each box presents the time slot that is dedicated to a



0 50 100 150 200 250

(es0,sw0)

(es1,sw0)

(sw0,es0)

(sw0,es1)

(sw0,sw5)

(sw5,es4)

f0 : es0 → es1
f1 : es1 → es0
f2 : es0 → es1
f3 : es1 → es4
f4 : es0 → es4
f5 : es1 → es4

(a) LS TT transmission schedule

0 50 100 150

(es0,sw0)
(es1,sw0)
(sw0,es0)
(sw0,es1)

(sw0,sw5)
(sw5,es4)

(sw0,sw1)
(sw1,sw3)
(sw3,sw5)
(sw0,sw2)
(sw2,sw4)
(sw4,es4)

f0 : es0 → es1
f1 : es1 → es0
f2 : es0 → es1
f3 : es1 → es4
f4 : es0 → es4
f5 : es1 → es4

(b) GA TT transmission schedule

Fig. 3: Transmission schedule of LS and GA

certain TT flow on a specific link. As the graphs show, in GA
the makespan of TT flows is improved compared to LS (from
250 µs to 178 µs). The reason is that the fixed routes used in
LS cause high traffic load on certain physical links, although
other links are under low utilization. In contrast, GA benefits
from the load balancing while computing routes using joint
scheduling and routing constraints. The enhancement of
makespan is important because the TT transmission schedule
plays a key role in the complex time-triggered systems
that comprise several mission-critical applications with short
deadlines.

period/ route route
deadline LS GA

(µs)

f0 500 / 100 es0, sw0, es1 es0, sw0, es1
f1 400 / 350 es1, sw0, es0 es1, sw0, es0
f2 400 / 250 es0, sw0, es1 es0, sw0, es1
f3 500 / 380 es1, sw0, sw5, es4 es1, sw0, sw1, sw3, sw5, es4
f4 500 / 250 es0, sw0, sw5, es4 es0, sw0, sw2, sw4, es4
f5 1000 / 350 es1, sw0, sw5, es4 es1, sw0, sw5, es4

TABLE I: TT flow parameters

VIII. EXPERIMENTS AND EVALUATION

A. Experimental Setup

GA and LS both are implemented in C++ and run on a
T460 ThinkPad computer with 2.4GHz Intel i5 CPU and
32GB of memory.

Fig. 4: Topologies used in our experiments. Every switch is
connected to either 3, 4 or 5 hosts in a star structure.

We generate several system models (including architecture
and application graphs) using the SNAP library [12]. These
system models are given as inputs to GA and LS sched-
ulers. We conduct our experiments on two different network
topologies: 1) meshed grid and 2) ring. As depicted in Figure
4, each network comprises 9 switches and every switch is
attached to 3 to 5 end systems. We consider the ring topology
to reflect a common structure of industrial control networks.
To evaluate our joint routing and scheduling constraints, we
use the meshed grid structure. This topology has a higher
connectivity and provides more routing possibilities for every
TT message. It is also assumed that all physical links in our
experimental networks have a bandwidth of 1 Gbps and all
switches require 2 nanosecond for processing each byte.

The flow interdependencies are formulated using a random
Forest Fire directed graph [12]. In our synthetic application
graph which includes 15 tasks, we use 4 different traffic
classes. The characteristics of each traffic class are detailed
in Table II. It is noteworthy that the list of eligible end-
systems which every task can run on (i.e. c.CanRunOn)
is chosen randomly. Furthermore, each TT flow’s deadline is
selected randomly from a range of 200 to 800 microseconds.
It is also assumed that all end systems are identical and
all computational tasks have the same execution time (i.e.
4 microseconds).

traffic class f.size f.period
(bytes) (µs)

class1 200 100
class2 400 200
class3 600 300
class4 800 400

TABLE II: Traffic classes parameters

GA initializes the genetic algorithm parameters as follows:
population size = 100, the number of generations = 100, the
mutation probability = 0.2, the crossover probability = 0.9
and convergence probability = 1.



2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

test case index

sc
he

du
la

bi
lit

y

GA schedulability for 30 TT flows
GA schedulability for 35 TT flows
GA schedulability for 40 TT flows

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

1

test case index

sc
he

du
la

bi
lit

y

LS schedulability for 30 TT flows
LS schedulability for 35 TT flows
LS schedulability for 40 TT flows

Fig. 5: Schedulability of LS and GA with varying TT loads and the meshed grid topology

B. Experiments and Evaluation

In this section, we evaluate the scheduling capability and
efficiency of GA using the experimental results of LS which
serve as a baseline for the state-of-art two-phase scheduling
solutions.

The first part of the experiments is intended to study the
impact of varying load on schedulability and transmission
makespan of LS and GA schedulers. For this purpose, we
consider the system models with the meshed grid structure
(Figure 4) and three different TT traffic loads (i.e. 30, 35 and
40 TT flows). For every traffic load, we generate 30 different
flow interdependency patterns although the network topology
remains the same.

TT flows LS GA Improved ratio
Avg makespan Avg makespan

(µs) (µs)

30 168.62 100.25 0.4
35 179.42 121.14 0.32
40 180 142 0.21

TABLE III: Transmission makespans for the meshed grid
topology and varying load.

Table III lists the required time for delivering all TT
flows to corresponding destinations. The improved ratio of
makespan in this table is calculated as follows:

ImpRatio =
LS average makespan− GA average makespan

LS average makespan

GA compared to LS improves TT transmission efficiency on
average by 0.31. The enhanced scheduling efficiency of GA
implies shorter end-to-end delays, more compact TT global
schedules and better utilization of link bandwidth. To achieve
the optimal makespan, GA distributes the computational
tasks over available end-systems and balances the load over
different physical links. GA also schedules different TT flows
on a certain link with the minimum gap between their time
slots. Furthermore, joining time slots of consecutive TT flows

on a specific link leads to the minimum number of guard
bands and better resource utilization (e.g. link bandwidth).

TT flows LS GA
Avg Exec Time Avg Exec Time

(s) (s)

30 0.01 52.54
35 0.013 54.61
40 0.014 56.75

TABLE IV: Execution time for the meshed grid topology
and varying load.

Table VI presents the average execution time of GA and
LS for each traffic load. As simulation results show, LS
solves the scheduling problem faster than GA, since LS uses
the fixed routing and ignores the key role of routing in the
scheduling process. In other words, the fixed routing between
each sender and receiver limits the search space and reduces
the solving time of LS significantly. In contrast, GA con-
siders all routing possibilities and employs the joint routing
and scheduling constraints. Therefore, the design space of
system implementations gets bigger and GA requires more
time for the global schedule generation.

In addition as results depict, the average execution time of
GA and LS increases when the number of flows increases.
Because by increasing network load, our schedulers take
more time to find a task binding and resource allocation that
leads to a valid schedule.

The graphs in Figure 5 depict the schedulability of GA
and LS for the above benchmarks. The schedulability ratio
of GA for test cases with varying loads is on average 0.98.
On contrary, LS scheduling ratio for same test cases is
on average 0.27. As the graphs illustrate, the scheduling
capability of LS compared to GA decreases significantly
when the network utilization (i.e. number of TT messages
in our experiments) increases. LS like other state-of-the-
art scheduling solutions solves the scheduling and routing
problems separately. Consequently, the increasing number of



2 4 6 8 10 12 14 16 1810 12 14 16 18 20 22 24 26 28 30
0

1

test case index

sc
he

du
la

bi
lit

y
GA schedulability for ring topology
LS schedulability for ring topology

Fig. 6: Schedulability of LS and GA with different topologies

TT flows in LS scheduler may lead to over-utilized links
and the violation of constraint 6. GA resolves this issue
by transmitting TT flows over different routes and avoiding
bottlenecks in routing TT frames. In other words, GA excels
LS by examining different routing possibilities during the
scheduling and optimization process.

To evaluate the effects of the network topology on GA
performance metrics, we repeat the test cases with 30 flows
in the first part using the ring structure (Figure 4). To be
more specific, the flow interdependency patterns in this set
of benchmarks stay unchanged although the switches are
connected to each other in a ring topology rather than a
meshed grid structure.

According to experimental results which is presented in
Figure 6, when the ring topology is used, the LS capability
to find a valid schedule declines significantly compared to
the GA scheduler. It is important to note the similar number
of flows in the ring structure leads to a higher network
utilization. Therefore, LS fails to meet timing requirements
of more test cases due to the violation of constraint 6. In
contrast, GA keeps the schedulability ratio of one in all
test cases regardless of a chosen network topology. Since
GA overcomes the limitation of LS regarding over-utilized
links by balancing loads over different routes. In GA, this
strategy becomes feasible by examining a higher number
of scheduling possibilities that is derived from the joint
scheduling and routing constraints.

IX. CONCLUSIONS

In this paper, we present a genetic scheduling approach for
generating global schedules of TT communication. In con-
trast to state-of-art scheduling solutions with fixed routing,
the GA combines the routing and scheduling constraints and
computes a system-wide schedule in a single-step. To make
task binding and resource allocation feasible, we design a
system model in the form of an application graph and an
architecture graph. Furthermore, in this paper we define
joint scheduling and routing constraints and employ them

in the scheduling and optimization process of GA. This
novel scheduling approach also provides an opportunity to
distribute processing of real-time applications over different
end-systems using optimized task bindings.

To have a solid base for comparison, we developed a
list scheduler which is a typical example of state-of-art
scheduling procedures and solves the routing and scheduling
problems separately. The experimental results illustrate the
impact of load and network topology on GA and LS perfor-
mance indicators (i.e scheduling capability and efficiency).
In GA, we extend the search space of scheduling possibilities
using the joint constraints. This strategy, specifically in
presence of high network utilization, enhances the scheduling
capability of GA over LS significantly. In the experiments
we observed that GA improves the transmission makespan on
average by 31 % in comparison to LS. The optimal makespan
implies more compressed TT transmission schedule and less
number of guard bands.

ACKNOWLEDGMENT

This work was sponsored by Safe4RAIL Project, Grant
Agreement No. 730830.

REFERENCES

[1] “Institute of electrical and electronics engineers, time-sensitive
networking,” in Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/tsn.html, IEEE, 2017.

[2] M. A. Weiss et al., “Time-aware applications, computers, and commu-
nication systems (taaccs),” in Technical Note (NIST TN)-1867, 2015.

[3] “Institute of electrical and electronics engineers, inc.
802.1as-rev - timing and synchronization for time-sensitive
applications,” in Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/802.1AS-rev.html, IEEE, 2017.

[4] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing mes-
sage routing and scheduling in automotive mixed-criticality time-
triggered networks,” in Design Automation Conference (DAC), 2017
54th ACM/EDAC/IEEE, pp. 1–6, IEEE, 2017.

[5] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and
G. Mühl, “Ilp-based joint routing and scheduling for time-triggered
networks,” in Proceedings of the 25th International Conference on
Real-Time Networks and Systems, pp. 8–17, ACM, 2017.

[6] “Institute of electrical and electronics engineers, inc. 802.1qbv - en-
hancements for scheduled traffic,” in Time-Sensitive Networking Task
Group. http://www.ieee802.org/1/pages/802.1bv.html, IEEE, 2016.

[7] S. S. Craciunas, R. S. Oliver, M. Chmelı́k, and W. Steiner, “Scheduling
real-time communication in ieee 802.1 qbv time sensitive networks,”
in Proceedings of the 24th International Conference on Real-Time
Networks and Systems, pp. 183–192, ACM, 2016.

[8] L. Bingqian and W. Yong, “Hybrid-ga based static schedule generation
for time-triggered ethernet,” in Communication Software and Networks
(ICCSN), 2016 8th IEEE International Conference on, pp. 423–427,
IEEE, 2016.

[9] M. Lukasiewycz, M. Streubühr, M. Glaß, C. Haubelt, and J. Teich,
“Combined system synthesis and communication architecture explo-
ration for mpsocs,” in Proceedings of the Conference on Design,
Automation and Test in Europe, pp. 472–477, European Design and
Automation Association, 2009.

[10] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design
optimisation of cyber-physical distributed systems using ieee time-
sensitive networks,” IET Cyber-Physical Systems: Theory & Applica-
tions, vol. 1, no. 1, pp. 86–94, 2016.

[11] “Galib documentation,” in http://lancet.mit.edu/galib-2.4/, 2017.
[12] “Snap library 4.0, user reference documentation,” in

https://snap.stanford.edu/snap/doc/snapuser-ref/index.html, 2017.


