Redundancy Management for Safety-Critical Applications with Time
Sensitive Networking

Maryam Pahlevan! and Roman Obermaisser

3

University of Siegen, Germany
maryam.pahlevan @uni-siegen.de

Abstract—In modern cyber physical systems like industrial
automation systems and Advance Driver Assistance Systems
(ADAS), safety is considered as the main concern. Failures
in safety-time critical systems may lead to high economic
losses as well as dangers for humans and the environment.
Therefore, the Time Sensitive Networking (TSN) task group
not only introduced real-time properties to Standard Ethernet,
but also developed a novel fault-tolerance mechanism called
Frame Replication and Elimination for Reliability (FRER).
FRER offers highly reliable communication for Time-Triggered
(TT) traffic.

Simulation tools are seen as a cost and time efficient
approach to evaluate and verify network protocols during the
development phase and before the actual implementation. As
no simulation model in the state-of-the-art implements the
time-based features (e.g. time aware shaping and policing)
and non-time-based properties (e.g2. FRER) of TSN at the
same time. Hence, in this paper we present a simulation
model for temporal properties and redundancy management
in TSN networks using the Riverbed simulation framework.
In addition, we introduce the fault injection mechanisms to
evaluate the reliability (e.g. violation of end-to-end deadline and
packet loss) of TT communication based on FRER and different
faults. We demonstrate the applicability of the framework using
the realistic network use cases and traffic profiles.

[. INTRODUCTION

To take advantage of various Ethernet technologies that
offer high bandwidth and seamless connectivity, TSN in-
troduces temporal isolation for mixed-critically systems in
forms of IEEE 802.1 protocol extensions. TSN [1] using
Time Aware Shaper (TAS) [2] and a new synchronization
mechanism (i.e. IEEE 802.ASRev) [3] ensures the determin-
istic delivery of TT messages in the presence of other traffic
types (e.g. Best Effort traffic).

In addition to bounded latency and low jitter requirements,
fault tolerance is seen as a key feature of mission critical sys-
tems. Standard Ethernet is unable to recover seamlessly from
either transient or permanent faults. Therefore, to address
fault tolerant communication over Ethernet-based networks,
a wide range of protocols such as Rapid Spanning Tree
Protocol (RSTP) [4], Parallel Redundancy Protocol (PRP)
and High-availability Seamless Protocol (HSP) [5] were
developed. All aforementioned protocols enhance reliability
and availability of systems using redundant paths.

RSTP, in case of any failure, finds an alternative path
for the existing active route in up to 2 seconds. Thus,
this approach is not applicable for safety-critical systems
with stringent temporal constraints. To resolve this issue,

PRP duplicates messages and sends them over two separate
networks. Consequently, if one copy of the frame does not
reach the destination node due to a failure (e.g. link failure),
the second copy will be delivered to the receiver from
another network without any interruption. HSP uses the same
approach as PRP, but instead of using two separate networks,
it transmits duplicated frames over 2 redundant paths within
one network. It is good to note that HSP is mainly designed
for ring topologies [6].

TSN is tailored to real-time systems with strict timing and
safety requirements. Consequently, it is required to support
zero packet loss, guaranteed end-to-end delay and low jitter.
To achieve this goal, the TSN task group proposes IEEE
802.1CB (i.e. FRER) [7] as a new Ethernet sub-protocol.
FRER provides a robust and deterministic behavior for time-
sensitive systems using the same fault tolerance concept
that is specified in PRP and HSP [7]. FRER is a more
generic solution and mitigates some of the common PRP
and HSP challenges. For instance, FRER is deployable over
any network structure and is limited neither to ring topology
nor to two parallel networks. Furthermore, FRER permits
seamless communication between Standard Ethernet devices
and FRER-capable nodes and despite of PRP and HSP it
does not require any proxy for this purpose.

Networking experts and technology manufactures use sim-
ulation frameworks extensively to emulate and validate new
networking solutions. The implementation and deployment
of novel protocols on hardware is a very time consuming and
expensive process. Beside this protocol usually require plenty
of modifications due to constant changes in the solution
designs. As many TSN protocols are not finalized yet, in [8]
we developed the simulation models for the time-based fea-
tures of TSN. Using the TSN simulator, we allow to validate
the real-time capability of TSN solutions. In this paper, we
extend the TSN models which are presented in [8] to support
different FRER functionalities. The fault tolerance capability
of TSN is essential for message exchanges between mission-
critical applications. We develop the FRER functions in a
modular manner, so that they can seamlessly be integrated
to the existing TSN models at appropriate stages. In addition,
we present a fault injection model to verify the correctness
and applicability of the FRER module. We simulate different
faulty behaviors (including transient and permanent errors)
in our emulated TSN network and evaluate the impact of the
FRER module on the reliability of every stream for different

scenarios. To best of our knowledge, this is the first work
which develops simulation models with both time-based and
non-time-based services of TSN. The prior TSN simulation
frameworks focus on either non-time-based services (e.g.
[9]) or temporal features (e.g. [8]) of TSN. Therefore, this
work provides a more comprehensive simulation platform
for modeling, performance and reliability evaluation of TSN
networks.

The rest of the paper is structured as follows: Section II
provides a brief overview of the FRER protocol. In section
III, the simulation models of FRER capable devices are
described in more details. Section IV presents the evaluation
of experimental results which are derived from different
network dynamics. The last section concludes the paper.

II. REDUNDANCY MANAGEMENT IN TSN

The TSN task group introduces the IEEE 802.1CB stan-
dard to improve robustness and reliability of stream transmis-
sions especially for safety-critical traffic. A sender or a relay
system (e.g. switch) with FRER capability, first generates and
encodes a sequence number for each outgoing frame. Then
it forwards the multiple copies of the packets towards the
destination over multiple routes. Hence, in case of any failure
in one of the routes, the packet is delivered to the destination
via the redundant path. Therefore, the FRER mechanism
decreases the probability of traffic loss considerably. In TSN,
the IEEE 802.1Qca [10] protocol is deployed to configure
the alternative routes for each stream. In addition, to avoid
network overloading, the duplicated frames are eliminated
either at intermediate relay systems or at a receiver.

Fig. 1: FRER functions

As shown in Figure 1, FRER consists of five different
functions. Depending on the packet processing direction in
a FRER capable device, each function acts differently.

A. Sequencing

This module generates a sequence number for every frame
passed down from the upper layer to the physical layer. In
contrast, for each frame passed up in the protocol stack,
the sequencing function examines the sequence number of
a frame and discards the duplicated frames whose copies
have been received before.

B. Stream Splitting Function

This function makes zero, one or more copies of every
packet passed down to the physical layer according to the

stream split table. Each copy of a packet will be transmitted
to the destination via separate paths.

C. Individual Recovery Function

It checks the sequence number of every frame passed up in
the protocol stack and eliminates the frames whose duplicates
have been received previously. This function and sequencing
provide similar services, but individual recovery functions
can apply to multiple ports while the sequencing module is
port specific. It is good to note that the recovery module will
process a packet only if the integrity of the frame is verified
by the lower layer (e.g. physical layer) validity checks.

D. Sequence Encode/Decode

This function encodes a sequence number generated by
the sequencing function into the frame passed down for
transmission. In the reception direction, the function derives
the sequence number from the frame passed up in the
protocol stack. FRER introduces the Redundancy tag (R-
TAG) as an example of sequence number formatting. R-
TAG comprises of three parts: 1) EtherType which has the
value FIC1. 2) Reserved field which occupies the second two
octets of R-TAG and is reserved for future revisions of IEEE
802.1CB. 3) Sequence number field which is encoded in the
last two octets of R-TAG. Figure 2 illustrates the format of
the R-TAG.

T
EtherType | Reserved Sequence Number

o = 2 3 4 5

Fig. 2: R-TAG header structure

The encoding mechanism must be known to all relay
systems and end-systems. Otherwise they cannot decode the
sequence number from incoming frames.

E. Stream Identification Function

This function specifies a stream identifier for every frame
received either from the physical layer or the upper layer.
The stream identifier determines to which stream the frame
belongs and how it should be processed by other FRER
functions. The four different stream identification approaches
are listed in Table I. The stream identification functions can
also overwrite some of the parameters of the frame’s header
to reflect the stream identifier.

Stream Identification functions Stream Identifier

Null Stream identification
Source MAC and VLAN
Destination MAC and VLAN

Dst MAC address, VLAN ID
Src MAC address, VLAN ID
Dst MAC address, VLAN ID

Dst MAC address, VLAN ID
IP src address, IP dst address
IP next protocol, src port, dst port

IP octuple

TABLE I: Stream Identification Functions

Depending on the network design, the FRER functions can
be placed in the protocol stack of device’s port in different

orders. To be more specific, each port of a device selects
different FRER functionalities. Due to this flexible design,
the FRER capable devices are able to inter-operate with
network elements that are unaware of FRER. Furthermore,
FRER protects TSN networks from the faulty behaviors
like a stuck transmitter. To detect such errors, a network
element with FRER capability saves the history of a stream’s
sequence numbers. Using this information it discards packets
with a sequence number different from the expected value.

III. SYSTEM MODELS FOR FAULT TOLERANT TT
COMMUNICATION

We developed and integrated the FRER module to the
TSN time-aware models which we implemented in [8] using
the Riverbed simulation framework. Riverbed [11] (former
known as OPNET) is a powerful commercial tool which is
widely used in the industry and academia to simulate and
evaluate different communication layers, network elements
and protocols.

A. TSN Configuration Parameters

In TSN networks, the redundant routes and schedules of
TT streams are computed offline using the knowledge of the
network topology and the TT traffic profiles. In addition, in
our TSN models we use the source MAC address and VLAN
ID as a stream identifier. For this reason, we provide TT
traffic profiles and port-specific GCLs for all TSN-capable
devices within our simulator statically. A TT traffic profile
defines the stream characteristics while a port-specific GCL
determines the state of egress queues at a certain time slot.
For more details on configuration parameters, refer to [8].

B. TSN Switch Model

We build our switch model which provides real-time and
fault tolerance capability of TSN on top the standard Ethernet
switch. In the TSN switch model, first all incoming frames
are passed to the stream identification function. This module
identifies frames using the source MAC address and VLAN
ID fields. This stream identification function is passive and
does not modify the frame passed either up or down to
protocol stack. The stream identification function using the
stream identity table categorizes packets according to the
following traffic types: TT frames, asynchronous traffic and
BE messages.

After identifying the incoming stream, the ingress time-
based filtering function applies to TT frames. This function
filters a TT frame that arrives outside the expected time
window. As a next step, the sequence decoding function is
invoked. This function determines whether the packet has an
R-TAG or not. If the frame carries the R-TAG, it retrieves
the sequence number from the last two octets of the R-TAG
and then calls the sequence recovery function. In the counter
case, if the frame does not contain an R-TAG, the sequence
generation function is invoked. The frame without the R-
TAG is sent from an FRER-unaware device. This assumption
provides an opportunity to simulate a TSN network with

Enqueue Module

Egress Time_aware

Sequence Encoding Shaping

Sequence Recovery

Sequence Generation Sequence Decoding Dequeue Module

MAC

|
|
|
|
T
|
f
|
t
Sequence Decoding |
.
v PHY

Filtering

Ingress Time_based

) Stream Indentification
Filtering

MAC Port C Conne
FRER Aw.

Stream Indentification

|
|
|
|
|
L
|
|
| Ingress Time_based
|
|
|
I
|
I
|

MAC PHY

PHY

FRER Av

PortAC

Non-FRER Aw

Fig. 3: Packet processing phases in the TSN switch model.

the combination of FRER-unaware and FRER-aware network
elements.

In the stream identity table, for every stream in addition
to stream parameters (e.g. VLAN ID), the last received
sequence number is stored in a parameter called LastRec-
SeqNum. The sequence recovery function examines the
sequence number of the frame against the LastRecSeqNum
of the stream to which the message belongs. This func-
tion uses the VectorRecoveryAlgorithm. Therefore, if the
packet’s sequence number is equal to LastRecSeqNum +
1, the enqueue module is invoked. In the counter case, if
the packet’s sequence number does not match the expected
sequence number (i.e. LastRecSeqNum + 1), the packet will
be dropped.

For every stream in the stream identity table, the last
generated sequence number is stored in a parameter called
LastGenSeqNum. For the first frame of a specific stream, the
sequence number generation function sets the LastGenSe-
gNum to zero. For subsequent frames, this function incre-
ments the LastGenSeqNum by one. To diminish the impact
of transient faults, this function resets the LastGenSeqNum
when it reachs the value 50. The sequence encoding function
encodes the LastGenSeqNum of the stream into the R-TAG
format. To be more specific, the function creates the R-TAG
for the frame and sets the last two octets of the R-TAG to
the value of the LastGenSeqNum parameter.

TAS

‘Port ‘i— \m@—.—ﬂi

: B Strict
Forwarding — b ' ‘ Port
engine ‘Prlorlty c

Fig. 4: The queuing scheme of TSN switch model

After encoding the sequence number, the control is passed
to the enqueue module. The enqueue module enqueues the

frame to the correct egress queue. The queuing scheme
of a TSN switch model is presented in Figure 4. This
module enqueues TT messages to the egress port’s TT queue.
Asynchronous messages are put into one of the asynchronous
queues depending on the frame’s priority. The BE messages
are also put into the outgoing port’s BE queues depending
on the frame’s priority. It is good to note that the strict
priority scheme is deployed between the TT, asynchronous
and BE queues. After enqueuing, the egress time-based
shaping function specifies which queue is eligible to transmit
the next packet according to the port-specific GCL. Finally
the dequeue module transmits the packet from the chosen
queue to the attached link. Figure 3 depicts the block diagram
of packet processing in the TSN switch model.

C. TSN End System Model

An end-system model can be either talker or listener.
Depending on the role, different flow control mechanisms
are specified for the end-system model. The FRER logic of
end-system and switch models is identical. On the transmis-
sion side in the end-system model, first the source module
generates frames according to the outgoing traffic profiles.
After that, the frame is passed to the sequence generation
module to compute appropriate sequence numbers. Then the
sequence encoding function adds the desired R-TAG to the
frame. As a next step, the enqueue module puts the frame
into a certain queue based on the traffic type. The end-system
model uses the same queuing scheme as the switch model.
At the final stage, the dequeue module sends out the message
from the queue which is selected by TAS to the attached link.

For a frame that is received from the physical link, first
the stream identification function identifies the stream that
the frame belongs to using the source MAC address and
the VLAN ID fields. For TT streams, the ingress time-based
filtering module discards frames that are received at unsched-
uled time slots and forwards the rest of the frames to the
sequence decoding function. The sequence decoding function
retrieves the sequence number of the frame from the R-
TAG. The sequence recovery function compares the sequence
number of the frame against the stream’s LastRecSeqNum
and then discards the frame that has the wrong sequence
number (i.e. not LastRecSeqNum + 1). This function uses the
VectorRecoveryAlgorithm. It is good to mention that in our
simulator in order to offer temporal properties, the simulation
time is considered as the global clock. Therefore, the local
clocks of all devices are synchronized to the global clock on
a regular basis (i.e. 100 milliseconds). Figure 5 presents the
ingress and egress flow control mechanisms within a TSN
end-system model.

D. Fault Injector

FRER is introduced to protect the TSN systems against
unwanted and faulty behaviors. To validate safety and fault
tolerance capability that is offered by FRER, we developed
a fault injector model. This model simulates different faults
(e.g. link failure). Therefore, the fault injector provides an
opportunity to investigate the behaviors of TSN capable

Ingress Egress

Sink Module Source Module

Sequence Generation
Sequence Recovery

Sequence Encoding
Sequence Decoding

Enqueue Module
Ingress Time_based Filtering

Egress Time_based Shaping

Stream Indentification
Dequeue Module

MAC MAC

PHY PHY

Fig. 5: Ingress and egress flow control of a TSN end-system

devices in such fault states. Our fault injector emulates the
following faults:

o Link Failure: This failure can be easily emulated by
enabling the link failure parameter for a specific link.

o Crash Failure: The crash failure can be emulated by
setting the device-specific failure/recovery attribute.

o Stuck Transmitter: This failure occurs when a sender
transmits messages with the same sequence numbers
instead of incremental values. To simulate this failure,
the end-system model sends frames with the repetitive
sequence numbers.

¢ Omission: The omission failure happens when a sender
fails to transmit a certain frame or a specific packet is
not delivered to the receiver. The sending end-system
emulates this failure by transmitting frames with non
consecutive sequence numbers.

« Resequencing: When the frames which belongs to a
certain stream arrive at the receiver in a wrong order,
the resequencing failure occurs. To simulate this failure,
the sending end-system delays transmitting frames with
the lower sequence numbers. Therefore, it first sends
frames with the higher sequence numbers.

IV. EXPERIMENTS AND EVALUATION

Our TSN simulator comprises devices which support time-
based (e.g. IEEE 802.1Qbv and 802.1Qci) and non-time-
based features (e.g. IEEE 802.1CB) of TSN and communi-
cate with each other via full-duplex 100 Gbps physical links.
This simulation executes on a PC with 32GB memory and
a dual-core 2.4 GHz CPU.

A. Experimental Setup

To evaluate the impact of FRER on the reliability of
mission-critical applications, we use an example layout of an
Ethernet-based Train Communication Network (TCN). This
network like other Ethernet-based train topologies comprises
an Ethernet Train Backbone (ETB) and an Ethernet Consist
Network (ECN). As shown in Figure 6, all devices in ECNs
are connected to the ETB via two redundant ETB lines
and also two separate ETB switches. In addition, within
every consist network, ECN switches are connected to each

other using a ring topology. Consequently, this layout offers
redundant paths at both ECN and ETB level and meets the
high safety demands of mission-critical train applications
(e.g. braking system).

— mm | 8 swi e = P
[EcnL €18 swtch, [ecngggo e cone | EBswad
= t
2 7" oz ceus
| X g X
<)
- —H
— ECH spiegs
Ech swghd N oy putchs 7
‘ al \ CS, g 2 \
S —
SN ! oy EH st g
TR Ny empsemsor Ectynichs Lot sensor X Door sensor
Temp X
4 | 7 Eci
| N ; X e
[| erommes e

Fig. 6: Experimental network structure. The redundant paths
of s1 are shown by orange and purple arrows while green
and pink arrows illustrate the s2 redundant routes.

In this set up, within every consist network (except ECN1),
first the sensor collects data at rate of 100 milliseconds and
then sends samples to the corresponding Central Computing
Unit (CCU). After that, every CCU sends sensor data to
the control application and the monitoring application which
resides in ECNI1. Finally, the control application processes
the sensor samples and sends back process messages towards
each CCU. It is good to note that we assume all aforemen-
tioned streams are TT. Hence, their redundant routes and
transmission schedules are allocated statically. To achieve
a more realistic use case, we consider a background traffic
from the monitoring application towards all CCUs. Table II
details the parameters of all streams which are sent over the
experimental network.

Stream Src — Dst Period (ms)
s1 CCU1 — control app 200
52 CCU?2 — control app 200
s3 CCU3 — control app 200
s4 temp sensor — CCU1 100
s5 light sensor — CCU?2 100
s6 door sensor — CCU3 100
s7 CCU1 — monitoring app 200
58 CCU?2 — monitoring app 200
59 CCU3 — monitoring app 200

TABLE II: TT Stream Specifications

B. Experiments and Results

To investigate the behavior of TSN capable models in
the presence of different transient and permanent faults, we
simulate the following scenarios:

1) Messages with identical R-TAG header: In the first
scenario, the fault injector forces the control application
to send process messages with repetitive sequence numbers
towards the CCUs for specific time intervals (i.e. from 1.2
to 3 seconds). As the graph in Figure 7 depicts, CCU1 is not
receiving any process message from the control application

during this period of time. The FRER logic of ECN switch 1
discards all process messages with the same R-TAG header
and does not permit the faulty packets consume the network
resources (e.g. bandwidth and memory). Therefore, FRER
protects the TSN network against this transient fault. CCU1
resumes receiving the process messages just after the control
application recovers from this failure (at 3 seconds). As the
behaviors of all CCUs in the described condition is identical,
we just present the result for CCU1.

number of received packets

O | @ | | | | | I
1 2 3 4 5 6 7 8 9

time [s]

Fig. 7: The number of process packets are received by CCU1
in presence of repetition failure in the control application

2) Injecting frames with wrong sequence numbers: To
emulate the omission failure, the fault injector modifies the
sequence number generation function of CCUI1 so that it
increments the LastGenSeqNum by 3 instead of 1. Conse-
quently, ECN switch 2 notices that some CCUI messages
are missing. Therefore, it discards all frames that originated
from CCUI in order to mitigate this faulty behavior. As
graph in Figure 8 shows, the control application and the
monitoring application are not receiving any message from
CCU1 just after the fault injected to the network (i.e. at 1.2
seconds). CCU1 recovers from this failure at 3 seconds and
starts to send frames with the consecutive sequence number.
ECN switch 2 continues discarding messages that are sent
from CCUI, because in ECN switch 2, the LastRecSeqNum
of CCUI stream is not aligned with the R-TAG header of
messages sent from CCUI. ECN switch3 resumes accepting
CCU1 frames at 7.2 seconds. The reason is that the CCUI
messages start carrying the expected sequence numbers due
to reseting the LastGenSeqNum parameter in CCU].

The fault injector also modifies the sequence number gen-
eration function of CCU2 so that for every two consecutive
frames first it increments the LastGenSeqNum by 2 and then
decrements this parameter by 1. Due to this modification
which simulates a resequencing failure, ECN switch 5 first
receives a CCU2 frame with higher sequence number and
then a message with lower sequence number. Hence, as
shown in Figure 9, ECN switch 5 does not forward any
CCU2 message to the control application and the monitoring
application just after noticing this faulty behavior (i.e. at 1.2
seconds). In both aforementioned scenarios, the first switch
on the path to the control application (i.e. ECN switch
2 and ECN switch 5 respectively), discards faulty frames.

—e— s1 frames
—m— 57 frames

number of received packets

time [s]

Fig. 8: The number of s1 and s7 packets received by the
control and monitoring applications in case of Omission
failure

Therefore, FRER in addition to enhancing the network fault
tolerance, improves the overall network resource utilization.
To achieve this, FRER eliminates the probability of forward-
ing the faulty packets over the TSN network.

number of dropped packets

1 2 3 4 5 6 7 8] 10
time [s]

Fig. 9: The number of s2 and s8 packets are discarded by
ECN switch 5 in case of Resequencing failure in CCU2

3) Testing FRER against link failures: As described be-
fore, FRER offers safety and fault-tolerance capability using
redundant paths. Therefore, we set up redundant paths for
s1 and s2 before running simulations. We also disable RSTP

I I I
—e— s1 frames
—m— 52 frames
—e— 53 frames

number of received packets

1 2 3 4 5 6 7 8 9 10

time [s]

(a) The number of s1, s2 and s3 packets are received by the control
application in case of /; failure

[yscale=0.7]

over our simulated network to allow forwarding frames from
two redundant routes simultaneously.

The fault injector at 1.2 second makes /1 fail. Before the
occurrence of the /1 failure, ECN switch 1 receives sl and
s2 frames from two separate paths (which are illustrated in
Figure 6). Then it forwards the frames which arrive first and
eliminates the duplicated messages. As the graph in Figure
10.a shows, the control and the monitoring applications do
not experience any traffic loss from sl and s2. After the /1
failure, ECN switch 1 still receives s1 and s2 frames from
the redundant paths and delivers them to the control and
monitoring applications. These applications are not receiving
any s3 messages after the /1 breakdown. The reason is
that we do not set up redundant paths for the s3 stream.
Hence, after the failure in the primary route, s3 frames
are not delivered to the control and monitoring applications
anymore.

It is good to note that the redundant routes of s1 comprises
different numbers of links. Consequently, as graph in Figure
10.b presents, the end-to-end delay of s1 has different values
before and after the [1 failure. However, the s2 end-to-
end latency remains unchanged during the simulation. The
redundant paths of s2 unlike the sl routes have the same
number of physical links. In our simulator, every frame
remains in the TSN switch for 2 us (i.e. Dprocessing)- In
addition, the size (s,,) of all frames which are sent over our
network is set to 64 bytes and the bandwidth (b;) of all links
is set to 100 Gbps. Hence, the frame’s transmission delay
(D) within the TSN switch is calculated as follows:

D, = s, /b; = (64bytes)/(100Gbps) = 5.12ns

As the propagation delay (Dpropagation) Of €ach link is set to
8 us, the frame’s end-to-end delay considering chosen route
is calculated as follows:

Deze = numohOPS * (Dprocessing +D;+ Dpropagation)

—

For instance, D¢y, of s1 before and after the /1 failure
computed as follows:

N

60 [[

50
é a—l
= 40 —
)
=
= 30 —
L
S
=] 20 —
g

10| | _e— s1 stream |

—m— 52 stream
0 T T T | | | | | | |

1 2 3 4 5 6 7 8 9 10
time [us]

(b) The end-to-end delay of sl and s2 streams in presence of /1
failure

Fig. 10: The reliability of s1, s2 and s3 streams in case of /1 failure

Beforefailure : Depe = 4% (2us+5.12ns + 8uus) = 40.02us

Afterfailure : Deye = 6% (2Us +5.12ns + 8us) = 60.03 s

4) Testing FRER against crash failures: To evaluate the
impact of crash failures, the fault injector sets the failure
attribute of ETB switch 2. Consequently, ETB switch 2 stops
forwarding frames to neighbor switches. After ETB switch
2 crash (i.e. at 1.2 seconds), the control and monitoring
applications do not receive s3 anymore, because the only
route of s3 passes through ETB switch 2. However, these
applications continue receiving s2 from the redundant route
which does not pass through the ETB switch 2. The crash
failure results are presented in Figure 11.

—e— 52 frames
—m— s3 frames

number of received packets

time [s]

Fig. 11: The number of s2 and s3 packets are received by
the control application in case of ETB switch 2 crash

It is good to mention that FRER cannot protect TSN
networks from crash failures of all devices. For instance,
when the fault injector sets the ECN switch 1 to a crash
failure, no TT stream can flow between ECN1 and the other
ECNs. ECN switch 1 is a single point of communication
between the control application and the other devices in our
simulator.

V. CONCLUSION

In this paper, we extended the simulation models of TSN
time-based features to support fault-tolerant communication.
To be more specific, we introduced the FRER procedure
in our simulator to evaluate reliable TSN networks. The
implementation of the FRER logic is done in a modular
way and is integrated with the existing TSN models without
significant modifications.

These TSN capable models are used to evaluate and
validate the fault-tolerance capability of TSN devices in the
absence of real TSN hardware with FRER logic. To achieve
a comprehensive evaluation, we enforce different faults on
a highly redundant train network structure and evaluate the
reliability (e.g. packet loss) in different fault conditions. The
experimental results verify that the IEEE 802.1CB standard
protects TSN systems against transient errors (e.g. stuck
transmitter, resequencing) and offers bounded end-to-end

delay and zero packet loss in case of permanent errors (e.g.
link failure, node crash).
ACKNOWLEDGMENT
This work was done as part of Safe4RAIL Project, Grant
Agreement No. 730830.
REFERENCES

[1] “Institute of Electrical and Electronics Engineers, Time-Sensitive
Networking,” in Time-Sensitive Networking Task Group. [Online].
Available: http://www.ieee802.0rg/1/pages/tsn.html, IEEE, 2017.

[2] “Institute of Electrical and Electronics Engineers, Inc.
802.1Qbv - Enhancements for Scheduled Traffic,” in Time-
Sensitive Networking Task Group. [Online]. Available:

http://www.ieee802.0rg/1/pages/802.1bv.html, 1IEEE, 2016.

[3] “Institute of Electrical and Electronics Engineers, Inc. 802.1AS-
Rev - Timing and Synchronization for Time-Sensitive Applica-
tions,” in Time-Sensitive Networking Task Group. [Online]. Available:
http://www.ieee802.0rg/1/pages/802.1AS-rev.html, 1IEEE, 2017.

[4] “IEEE Std 802.1D, IEEE Standard for Local and metropolitan area
networks Media Access Control (MAC) Bridges,” IEEE, 2004.

[5] “IEC 62439-3 Ed.03, Industrial communication networks - High avail-
ability automation networks - Part 3: Parallel Redundancy Protocol
(PRP) and High-availability Seamless Redundancy (HSR),” IEC, 2016.

[6] S. A. Nsaif and J. M. Rhee, “Seamless ethernet approach,” in Con-
sumer Electronics (ICCE), 2016 IEEE International Conference on,
pp. 385-388, IEEE, 2016.

[7]1 “Institute of Electrical and Electronics Engineers, Inc. 802.1CB
- Frame Replication and Elimination for Reliability,” in
Time-Sensitive Networking Task Group. [Online]. Available:
http://www.ieee802.0rg/1/files/private/cb-drafts/d2/802-1 CB-D2-9.pdyf,
IEEE, 2017.

[8] M. Pahlevan and R. Obermaisser, “Evaluation of time-triggered traffic
in time-sensitive networks using the opnet simulation framework,” in
Farallel, Distributed and Network-based Processing (PDP), 2018 26th
Euromicro International Conference on, pp. 283-287, IEEE, 2018.

[9] P. Heise, F. Geyer, and R. Obermaisser, “Tsimnet: An industrial time
sensitive networking simulation framework based on omnet++,” in
New Technologies, Mobility and Security (NTMS), 2016 Sth IFIP
International Conference on, pp. 1-5, IEEE, 2016.

[10] “Institute of Electrical and Electronics Engineers, Inc. 802.1Qca -
Path Control and Reservation,” in Time-Sensitive Networking Task
Group. http://http://www.ieee802.0rg/1/files/private/ca-drafts/d2/802-
1Qca-d2-1.pdf, IEEE, 2015.

[11] “Introduction to Riverbed Modeler Academic
https:splash.riverbed.com/docs/DOC-4833, 2018.

Edition,” in

