Latency-Aware Frequency Scaling in
Time-Triggered Network-on-Chip Architecture

Rakotojaona Nambinina, Daniel Onwuchekwa, Roman Obermaisser
Chair for Embedded Systems
University of Siegen
Siegen, Germany
{Andrianoelisoa.Rakotojaona, Daniel.Onwuchekwa, Roman.Obermaisser @uni-siegen.de }

Abstract—Low power consumption is one of the major de-
sign requirements for Network-on-Chip (NoC) based multi-
core architectures. Scaling the voltage and frequency of NoC
during run-time allows to optimize power consumption within
the chip. However, the associated latency increase and throughput
degradation limit its use. Scaling the frequency of routers can
affect the performance of the NoC, as the frequency of routers
may be scaled down while they are still active. On the other
hand, using time-triggered communication in the NoC ensures
predictability and deterministic communication and facilitates
frequency scaling at the router level according to a predefined
schedule. Consequently, the time-triggered scaling of router
frequency optimizes the power consumption of the NoC. It
also preserves the performance of the NoC by adjusting the
frequency of routers at a specific time defined by the schedule
and guaranteeing that each router’s frequency is clock-gated only
when it is idle. In this paper, we discuss the architecture of a
time-triggered NoC equipped with power-saving techniques that
enable frequency scaling of the NoC routers while preserving the
system’s performance and predictability.

Index Terms—NoC, time-triggered, frequency scaling, multi-
core architecture, power-saving.

I. INTRODUCTION

In 1965, Moore predicted that the number of transistors
per integrated circuit would double every two years. To this
day, the semiconductor industry has successfully adhered to
Moore’s prediction, leading to the current state of the art in
system-on-chip architectures. With today’s advanced technol-
ogy, up to a billion transistors can be integrated into a single
chip, thus optimizing the performance of embedded devices
and opening up the possibility of using a multi-core architec-
ture on a single chip. The standard shared bus is often used
in multi-core architectures to communicate within the SoC.
However, using a shared bus is unsuitable when the number
of cores within the SoC increases since it does not support
simultaneous communication between multiple cores, which
increases the delay when multiple cores need to exchange
data. Network-on-Chips (NoCs) were introduced to solve this
communication problem of the shared bus. NoCs consist of
routers, links, and network interfaces connected to processing
elements. Using an NoC to connect multiple cores consumes
more power than a standard shared bus. Therefore, power
optimization techniques in NoC-based multi-core systems play
an important role. There are several techniques for improv-

ing power consumption in multi-core architectures. These
techniques include clock gating, power gating, and dynamic
voltage and frequency scaling (DVFES), which are used at the
core or NoC level. However, using power-saving techniques
can impact NoC performance because scaling the voltage
or frequency of cores or routers during run-time increases
message latency. It can result in messages not arriving on
time, which is not desirable in real-time applications. However,
using deterministic and predictable communication such as
Time-Triggered NoC (TTNoC) for communication between
multiple cores facilitates frequency scaling in the NoC routers
since the router’s active time and idle time can be predicted.
Thus, allow the power-saving techniques built in the TTNoC
to clock-gated the idle router, while adjusted the frequency
of active routers based on different deadlines and thus slack.
In addition, different routers might serve multiple messages
at the same time, needing a higher frequency (e.g., North to
South and West to East). In this work, we propose latency-
aware frequency scaling using a time-triggered network-on-
chip (TTNoC) architecture. This work is an extension of
previous work presented in [7], [8] with a distributed frequency
controller deployed in each router. The frequency controller
is responsible for adjusting the frequency of each router over
time depending on the configuration of the schedule rather than
using a central controller. It also supports multiple frequency
levels to scale the frequency of NoC routers for energy
optimization. The schedule used for scaling the frequency of
each router is computed offline, and this is an optimization
problem for a scheduler, which is not addressed in this paper.
In this work, we evaluate the resources used by the proposed
architecture in an FPGA and perform latency measurements
to evaluate the performance analysis of the proposed archi-
tecture compared to its baseline LISNoC introduced in [8].
In addition, we assess the power consumption of the proposed
techniques compared to the baseline without frequency scaling
using ORION 3 [4], which is an NoC power estimation tool.
The rest of this paper is organized as follows. Section II
discusses related work. Section III discusses the system model.
Section IV discusses the experimental results, and section V
concludes the paper.

II. RELATED WORK

NoC power consumption in multi-core architectures ac-
counts for a significant portion of the total chip. Many re-
search results [3], [5], [14] have confirmed that NoC power
consumption is around 10-36%. Therefore, reducing NoC
power consumption is important for developing a multi-core
platform. One way to solve the power problem in NoC-based
multi-core systems is to use power-saving techniques. Several
studies have proposed DVFS, clock gating, and power gating
to minimize the power consumption of NoC-based multi-core
architecture [16]. However, these results focus on power saving
in the processor or cache. Recently, DVFS has been proposed
for NoCs to optimize power dissipation. Some previous works
propose similar techniques for NoCs [1], [16], [7], [6], [17]
by scaling the voltage/frequency of each router. Meanwhile,
there are studies [2], [9] on static voltage and frequency
allocation for NoC components by partitioning and optimizing
voltage islands. However, these results are still for non-real-
time systems. In [7], time-triggered frequency scaling, called
TTFS, was introduced to enable frequency scaling in NoC
routers according to a predefined schedule. However, the
proposed architecture uses a centralized controller to scale
the frequency of NoC routers. This centralized controller is
sensitive to failure. Therefore, we extended the TTFS using
a distributed controller that scales the frequency of routers
according to a schedule. We also use two clock domains
(full and half frequency mode) to scale the frequency of the
active routers. However, the concept is more generic to support
multiple clock domains.

III. SYSTEM MODEL

In time-triggered NoC (TTNoC), starting tasks or injecting
messages follows an offline precomputed schedule that ensures
cach message or task accesses resources at a specific time
to avoid resource conflicts [10]. In addition, the TTNoC is
equipped with power-saving techniques to optimize the NoC
energy consumption. The power-saving techniques enable fre-
quency scaling of the NoC routers according to a schedule.
The TTNoC architecture supports different topologies such as
meshes and connects heterogeneous resources such as hard and
soft processors, memory subsystems, etc. Figure 1 provides an
overview of the TTNoC architecture. The architecture consists
of multiple cores interconnected by an NoC. The NoC consists
of routers, and each router is connected to other routers and the
tiles through communication links. The NI enables a resource
to access the NoC. The TTNoC has a frequency controller
that controls the operating frequency of the routers according
to the configuration in the NI. This configuration is based on
information from the TTNoC schedule.

A. LISNoC Overview

LISNoC served as the basis for implementing the TTNoC
with power saving-techniques. It is an open-source NoC
implemented in Verilog, mainly used for academic purposes
[15]. The main features of LISNoC include virtual channel

Core Core

Frequency i i | Frequency
HSNoC
7 7

O = @ O |

Core

Core

Frequency

Controller Controller

Fig. 1. Architecture of TTNoC with power saving techniques

support, flexible configuration, wormhole routing, and round-
robin arbitration for link multiplexing [15]. LISNoC uses a
packet format for data transmission, where each packet is
divided into flits with a header containing all information about
the destination processing element. The LISNoC presented in
[15] has been extended to include source-based routing and a
TTNI that supports time-triggered communication to enable
deterministic communication [8]. In addition, the LISNoC
router has been extended to support frequency scaling so that
the frequency of the routers can be adjusted during run-time.

B. Power model

In digital circuits, the power can be modeled in two phases:
active and standby. In the active phase, an input data is
pass through the module and produces an output. In the
standby phase, the module is idle. Dynamic power consists of
switching and short-circuit power, while static power consists
of leakage current, which is the current that flows through
the transistor when there is no activity. The total power
consumption in a CMOS-based transistor circuit has been
described in [13], [7]. It can be expressed by the following
equation:

R&otal = PDyn + PStat (1)
Where Pp,, is the dynamic power, and Pg;q; is static
power. The dynamic power is described in equation (2):
Ppyn = Psw + Psc 2
Psw is the switching power, and Psc is the short circuit
power. The switching power and the short circuit power are
further described in equation (3) and (4).
Psw =a-F-Cp - (Vaa)® 3)
Where « is the activity factor, F is the clock frequency, C'r,
is the load capacitance, and V4 is the power voltage.
Psc =10% - Payn 4

The static power is due to the leakage current in the individual
logic blocks, which is proportional to the supply voltage and
can be expressed by the following relation:

Pstar = -Vya)]

Pstat = B+ Vgq - e Vn/7Vr ©)

where 8 and v are experimentally derived constants , and
Vaa s the power voltage, and Vrp is the threshold voltage
and Vpr is the Boltzmann thermal voltage that is linearly
proportional to the temperature [13].

C. Frequency Scaling in Time-Triggered NoC

In TTNoC, communication and computations are controlled
by a scheduler [12]. The scheduler is used to schedule the
injection time of messages into the NoC. It ensures that
messages are transmitted between the sender and receiver
according to a fixed message transmission schedule established
during design time and is guaranteed to be collision-free. The
NI uses a global time base to ensure a consistent timing view.
Since TTNoC communication is deterministic and predictable,
it is possible to predict the time in which the router received
flits within the period, which facilitates frequency scaling of
the router and allows it to adjust its frequency during run-
time according to a schedule. The scheduler clock gates the
idle routers and operates the active routers at a frequency
determined by the schedule. Moreover, the scheduler ensures
that the router’s frequency is clock-gating only when no
message passes through to maintain the NoC’s performance
and ensure that critical messages meet the deadline. Figure
2 showed how the frequency of different routers is scaling
according to a schedule.

(FqL,t1) (Fghalf,t2)
A v
Router-1 ‘ Active | Idle Active
(FaL,t1)
A
Router-2 ‘ Active | Idle
(FqL,t1) (FqH,t2)
A 4
Router-3 ‘ Active | Idle | Active
(Fghalf,t1) (FaL,t2)
A A
Router-4 ‘ Active I Active | Idle

(Fq, t): (Frequency Used,
Time to adjust frequency)
FqL: Clock gated,

FgH: Router operated

at full frequency

Fghalf: Router operated

at half frequency

Active router with
full frequency =f

Active router with
half frequency = f/2

Idle router with
clock gated

UL

Fig. 2. Example of frequency Scaling in 4 routers according to a schedule

As shown in Figure 2, each router can be operated with
multiple clocks domain such as full frequency, half frequency,
and clock gating. The scheduler activates the frequency scaling
at a specific time defined by the schedule. During idle time, the
router frequency is clock gated. However, for active routers,

Period

the operating frequency may be in full or half-frequency mode,
depending on the value specified in the schedule. Figure 3
shows the structure of the TTNoC schedule entries, which are
stored as a circularly linked list. The schedule format of the
TTNoC contains five values, namely IstMsg, IstFreq, PortID,
FrqMode, and Next, as described below.

11-bit 4-bit 2-bit
| IstMsg IstFreq PortlD FrgMode | Next
31 20 9 5 3 0

11-bit 4-bit

Fig. 3. Structure of schedule entries for messages transmission in TTNoC

o IstMsg: specifies when the messages in a particular
PortID in the core interface are fed into the NoC.

« IstFreq: represents when the frequency of the router is
adjusted.

o PortID: Each sub-memory in the NoC core interface is
assigned a PortID from which messages are fed into the
NoC. Each PortID is associated with the path of the
packets.

« FreqMode represents the frequency used in the router.
For active routers the frequency should be operated with
a full or half frequency mode. The idle routers are clock
gated.

o Next is a reference to the next entry in the schedule.
Figure 4 shows an example of a schedule entry in the TTNoC.
Two entries are distinguished by color: Message entries are
white, and frequency entries are gray. The number in the
schedule entry shown in Figure 4 represents the address of the
entry in the schedule file. Selecting the correct schedule starts
by tracking the TTNoC schedule entries by address and next
pointers. The scheduler is responsible for triggering message
injection or frequency scaling at the time specified in the
schedule entries of TTNoC. As shown in Figure 4, entry 0
is a message entry, which means that the message with the
corresponding PortID will be transmitted at the time specified
by the entry. For message-type entries, the next value refers
to the address of the next entry. Here, entry 1 is a frequency
entry, meaning that the router’s frequency needs to be adjusted
with the frequency mode specified by the schedule entry. The
same operation is applied to the other entries in the TTNoC
schedule. After the operations are performed for all entries,
the next pointer of the last entry follows, pointing back to the
first entry of the period [10].

o[—{ T

l

Fig. 4. Linked-list TTNoC schedule with n-number of entries

D. Proposed Network Interface Architecture

The network interface is the interface that connects the
core to a routers. The time-triggered NI (TTNI) is a temporal

and spatial partitioning layer built on top of the NoC. Figure
5 shows the building blocks of the TTNI. It consists of
five building blocks, namely the core interface, scheduler,
packetization, depacketization, and a memory to store the path
for source-based routing. The components of the TTNI are

Network Interface

Core Interface

BE

Packetization

Memory
Store Path

Scheduler

Data

Bus

T

RC

Router
Interface

S_AXI

Frequency
Controller

tx Frequency
Controller

BE

entry from the schedule memory, the core interface or
frequency controller is triggered by the scheduler. The
core interface is triggered when the schedule entry is for
messages, and the frequency controller is triggered when
the schedule entry is for frequency. Figure 7 illustrates

the state machine of a dispatcher.
Check type
rigger frequecy)

Wait for
dispatch time

Fetch next
schedule entry

Read Freq
Mode

scaling

Data Depacketization

Bus

T

RC

Fig. 5. Proposed Network Interface Architecture

described below:

o Core interface and AXI wrapper: The main function of
the core interface is to provide the required communi-
cation service between the core and the NI. The core
interface has two ports, an input port and an output port.
The output port is used to queue messages from the core,
while the input ports forward messages from the NoC
side to the core. The core interface is equipped with an
AXI wrapper for efficient communication with the core.
The core interface sends the message in its specific port
according to the time specified in the schedule.

Scheduler: This module is responsible for controlling
communication within the NoC by feeding messages
at a predefined time. In addition, the scheduler is also
responsible for triggering frequency scaling in the router
according to a predefined time defined in the schedule
entries. As shown in Figure 6, the scheduler consists of a

i Scheduler ‘
GTB _(tx, PordiD) Core Interface
(NI)
! Dispacher |:
i| Schedule ! Frequency
| Memory |Read (x.FregMode) | conroller
i (Router)

Fig. 6. Scheduler Architecture

schedule memory and a dispatcher. The schedule memory
is responsible for storing the schedule entries of the
TTNoC. The dispatcher reads the schedule information
from the schedule memory and compares it with the
current value of the global time base (GTB). When the
progression of the GTB reaches a certain point of the

Fig. 7. Scheduler state machine

The state machine transits to the next state at the time
defined by the TTNoC schedule entries. At this time
the type of the TTNoC schedule entries is checked. For
message type entries, the state machine reads the PortID
and injects the message of the specified port at the instant
message defined by the schedule entries. After injection,
the new entry is fetched based on the next pointer in
the TTNoC schedule entries. In the case of a frequency
schedule entry, the state machine reads the frequency
mode (FreqMode) and causes the frequency controller to
adjust the frequency of the router based on the frequency
mode extracted from the schedule entries, after which
the new entry is fetched based on the next pointer in the
TTNoC schedule entries. After selecting the next TTNoC
schedule entries, the state machine waits again for the
dispatch time.

Packetization and depacketization: Packetization ensures
that messages from the core interface are encoded before
they are sent to the router. Depacketization receives the
messages from the router of the NoC and decodes the
messages before they are written to the core interface.
The router interface is an interface that connects both the
router and NI as well as router to router.

E. Proposed Router Architecture

The proposed router architecture used in TTNoC is de-
scribed in this section. The router consists of a set of input
and output buffers, a connection matrix, and a control unit
such as virtual channel (VC) allocator and SW allocator. The
buffers at the inputs and outputs are used to queue the data
transmitted over the channels. Buffers allow local storage of
data that cannot be forwarded immediately. Each router has
five channels corresponding to South, East, North, and Local.
The South, East, North, and West channels are responsible for
interconnection between neighboring routers, while the Local
channel is responsible for communication with the core. The
proposed router uses the source-based routing algorithm to
route data from the input port to the output port of the router.

This means that the routing decision for the output port is made
in the router, at least depending on the routing opcode, and
the paths of each packet are defined in the first flit or header.
Wormbhole flow control is used in TTNoC because it supports
low latency, high speed, and guaranteed delivery of packets,
making it suitable for real-time communication [11]. The
generic router architecture is extended to support frequency
scaling with a frequency controller that re-configures the op-
erating frequency of the router during run-time. This frequency
controller receives configuration data from the neighboring NI
Figure 8 shows the architecture of the proposed router.

ROUER VC Allocator
SW Allocator
FIFO & VC FIFO & VC
| ——— ——— :
EAST—{C——————— > ————— | >EAST
: h
WEST —» C——1 g —— e N =Y
| :
NORTHE_, ————— Crossbar ——> C———————1| 3/NORTH
: 1 1 :
SOUTH}—) ————— —> 1 > SOUTH
: b
LOCAL — [—— | —V LOCAL
| :
" Operating clock
tx adjust T
rrrrrrrrrrrrrrrrrrrrrrrrr | Frequency B N 1 D -
NI : ' Frequency Controller
—Frearao—>

Frequency
Mode

Fig. 8. Proposed router architecture

As shown in Figure 8, the proposed router architecture
consists of three main components, which are explained below:

o First-In-First-Out buffer: This memory is used to buffer
incoming and outgoing data in the router. The buffers of
the FIFO are replicated in the input and output ports of
the router for communication over virtual channels.

o Crossbar: This component is used to connect the input
and output ports of the router. All possible input data
lines are connected to the input ports of the crossbar
multiplexers. The output data of the input data line is
then controlled by the arbiter via high priority messages.

« Frequency Controller: It optimizes the power consump-
tion of the router. Each NoC router is equipped with
a frequency controller. This component is responsible
for configuring the frequency used by each router. The
router’s frequency is clock gated when the router is idle
and the scheduler assigns a frequency to routers when
the router is in active mode. The operating frequency of
the router is extracted from the schedule. The frequency
controller is a state machine that reads the configuration
from the NI, such as the trigger frequency and the

frequency mode (full or half frequency mode or down-
clocking). Figure 9 shows the states and transitions of the
state machine.

Full frequency

Wait for tx
adjust
frequency

Check
Frequency
Mode

Clock down
Router

Fig. 9. State machine of Frequency Controller

The state machine transits to the next state at the rising edge
of the trigger signal from the NI and the frequency operation
mode is checked. In full frequency mode, the state machine
configures the router to operate at full frequency. In half
frequency mode, the state machine configures the router to
operate at half frequency mode. On the other hand, in low
frequency mode, the state machine clock gated the frequency
of router. After configuring the router’s frequency, the state
machine waits again for the rising edge of the trigger signal
to adjust the router’s frequency.

IV. RESULT AND DISCUSSION

The architecture presented in the system model was im-
plemented on an FPGA to evaluate the functional behavior
of the proposed architecture and the resource utilization on
the FPGA, and to measure the packet latency of the TTNoC
with frequency scaling compared to the baseline LISNoC.
In addition, an ORION 3.0 [4] tool is used to estimate the
power consumption of routers. This is an open-source tool that
can be used to estimate the power consumption of a micro-
architecture, implementation, and operational parameters, as
well as multiple routers Register transfer level (RTL).

A. Zyngq Prototype

The TTNoC architecture with low-power techniques was
instantiated for prototyping on a Xilinx Zynq UltraScale+
ZCU102 evaluation board. The ZCU 102 consists of process-
ing systems (PS) and programmable logic (PL). The PL is
also referred to as FPGA, and the routers, TTNIs, and soft
processors are deployed in the PL. The extended LISNoC
described in section III-A served as the basis for implementing
the TTNoC. In addition, we use three soft processors, known
as MicroBlaze, implemented in the PL of the ZCU 102, and
a single hard processor (Arm Cortex-M1 processor) from the
PS. The resource consumption of a 2X2 TTNoC equipped with
power-saving techniques is shown in Table IV-A-1.

Hardware LUT Register (FF)
MicroBlaze x3 3250 2767
LISNoC x4 21920 14500
TTNI x4 52328 46604
Frequency 12 16
Controller x4
GTB 2 57

TABLE I

RESOURCE UTILIZATION OF 2X2 TTNoC

B. Performance Analysis of Proposed Architecture

The simulation results from ModelSim were analyzed to
evaluate the performance of the proposed TTNoC architec-
ture equipped with power-saving techniques and the baseline
LISNoC. The performance metric used to analyze the NoC is
latency. We are transferring two messages from core 0 and core
1 that share resources as depicted in Figure 10 and evaluate
the average latency of both messages from core O and core
1. Table IV-B-2 indicates the average latency result of the
LISNoC, operating with 200 MHz, and table IV-B-3 indicates
the average latency of TTNoC with frequency scaling. In
this experiment, the TTNoC is assumed to be operated at a
full frequency (200 MHz) when the messages pass through
the router, and clock gating is used when no messages pass

through the router.
Core
RO

/\1
S

!

7

Core 1

@@@@
N

Fig. 10. 3x3 LISNoC and TTNoC paths

Packet Size LISNoC Average | TTNoC Average
Latency (ns) Latency (ns)
2 785 550
4 1850 1100
8 3600 1870
16 10605 4210
TABLE IT

PACKET SIZE VS LATENCY OF CORE 0O

Packet Size LISNoC Average | TTNoC Average
Latency (ns) Latency (ns)

2 180 125

4 340 249

8 840 450

16 2100 875

TABLE III
PACKET SIZE VS LATENCY OF CORE 1
104 Average Latency Core 0
T T T T T
—e— LISNoC-Baseline
Lr Proposed TTNoC N

0.8 .
/[2
=
N—
> 0.6 =
Q
=
2
— 04 —

0.2 .

0 ! ! ! | ! ! ! [

2 4 6 8 10 12 14 16
Burst Length

Fig. 11. Plot of Average Latency against Burst Lenght

Graphs were plotted for both cores based on the values
given in the table IV-B-2 and I'V-B-3. Figure 11 represents the
average latency of core 0 with different packet sizes. Similarly,
graph 12 illustrates the average latency of core 1 with different
packet sizes. The curve between latency and packet size for
TTNoC looks roughly straight-line shaped for both cores;
however, in the case of LISNoC, the latency increases abruptly
as the packet size increases from 2 to 16 in both cores. As a
result, the proposed TTNoC performs better than the baseline
LISNoC when both are operated with the same clock speed.

C. Power estimation of TTNoC with frequency scaling vs
LISNoC

As described in the system model, dynamic frequency
scaling is used at the router level of the NoC to optimize
the power consumption of the multi-core on the chip. We
consider three cases to evaluate the power-saving techniques
used at the router level of TTNoC. The first case is a TTNoC
without frequency scaling (see Figure 13). The second case is
a TTNoC with power-saving techniques, where the frequency
of active routers is always operated in full-frequency mode,
and the inactive routers are clock gated (see Figure 14). The
third case (see Figure 15) is a TTNoC with multiple clock
domains, such as full-frequency and half-frequency modes.
The scheduler operates the active router in a full-frequency
mode for communication that requires high bandwidth and in
a half-frequency mode for communication that requires lower

Average Latency Core 1

| | | | T
—e— LISNoC-Baseline

2,000 1 Proposed TTNoC |

1,500 |- |
g
&

§ 1,000 | |
<
—

500 - .

0L | | | | I I I |

|
2 4 6 8 10 12 14 16
Burst Length

Fig. 12. Plot of Average Latency against Burst Length

bandwidth. Frequency selection is made by the frequency
controller depending on the schedule. Half-frequency mode
is typically used to optimize power consumption in the router
that needs to transmit a low-criticality message. Also, inactive
routers are always clock gated to save more power.

Full Half Q Clock
Frequency F Frequency F/2 Down

Fig. 13. Example of TTNoC without frequency scaling in the router

Full Q Clock
Frequency F Down

Half
Frequency F/2

Fig. 14. Example of TTNoC with frequency scaling

Both cases, 2 and 3, can optimize the power consumption
of the NoC router by clock gating the inactive routers. When
the second case is used, the frequency of the active routers is

Full Q Clock
Frequency F Down

Fig. 15. Example of TTNoC with frequency scaling with multiple clock
domain

Half
Frequency F/2

always operated at full frequency, and the slack in the low crit-
ical messages may be large. However, by using multiple clock
domains during the active time of the router, the frequency of
the routers can be operated at half frequency instead of full
frequency, which may reduce the slack time of messages and
optimizes the power consumption of routers, as illustrated in
Figure 16 and 17.

f
m
f
2 — —
f
) I —
f

Fig. 16. Example of messages within the NoC: Message 1, and 2 have large
slack time

fI2
R —
fl2

e —

f
m3

f
m —
t

Fig. 17. Example of messages within the NoC: We can see a four messages .
The scheduler adjust the frequency of m1, and m2 with half frequency mode

Table IV-C-4, IV-C-5, and IV-C-6 summarize the energy
consumption of a 3x3 TTNoC with frequency scaling and
without frequency scaling with different active times and dif-
ferent messages. Table IV-C-4 depicts the energy consumption
of the TTNoC without frequency scaling, which means that
the operating frequencies of routers are always operated at
full frequency mode for idle and active routers.

Table IV-C-5 shows the energy consumption of TTNoC with
frequency scaling. In this case, the frequency of the active

Message | Active Idle Frequency Deadlines Energy | Energy
D Router Router Used (micro Active Idle

s) (nJ) (nJ)
1 6 3 full 520 77380 38690
2 5 4 full 600 59523 74404
3 6 3 full 100 14880 7440
4 2 7 full 120 5952 20833

TABLE IV

CASE-1 TTNOC WITHOUT FREQUENCY SCALING

routers is always operated at full frequency and the idle routers
are clocked down.

Message | Active Idle Frequency Deadlines Energy | Energy
D Router Router Used (micro Active Idle
S) (nJ) (nJ)
1 6 3 full 520 77380 920
2 5 4 full 600 74404 1416
3 6 3 full 100 14880 177
4 2 7 full 120 5952 495
TABLE V

CASE-2 TTNOC WITH FREQUENCY SCALING

Table IV-C-6 shows the energy consumption of TTNoC with
frequency scaling. In this case, the active routers can operate
at full or half frequency depending on the schedule, and the
idle routers are clocked down. The following figure shows

Message | Active 1dle Freq Deadline| Energy Energy
D Router Router Used (micro Active Idle
s) (nJ) (nJ)
1 6 3 half 520 76413 920
2 5 4 half 600 73474 1416
3 6 3 full 100 14880 177
4 2 7 full 120 5952 6447
TABLE VI

CASE-3 TTNOC WITH FREQUENCY SCALING USING FULL AND HALF
FREQUENCY MODE

the comparison of the power consumption of the 3x3 TTNoC
based on the three cases define before.

3x3 TTNoC
B Energy case 1.2,3 (nJ)
350000
300000
250000
200000
150000

Energy (nJ)

100000
50000

Casel Case 2

Case 3

cases

Fig. 18. Average Energy consumed by TTNoC as defined in 3 cases

As seen in Figure 18, the energy consumption of a 3x3
TTNoC without frequency scaling is 299107 nJ]. However,

scaling the frequency of TTNoC, as described in Case 2,
optimizes the energy consumption of the TTNoC router as
the energy consumption decreases to 175628 nJ. The scaling
of TTNoC frequency with multiple clock domains described
in Case-3 reduces the energy consumption of TTNoC to about
173730 nl. Therefore, Case 3 is the best method for scaling the
TTNoC frequency since it has the lowest energy consumption
compared to Case 1 and Case 2.

V. CONCLUSION

TTNoC-based frequency scaling supports time-triggered
communication and frequency scaling at the router level
according to a predefined schedule. The results showed that
scaling the router’s frequency in both cases 2 and 3 described
in section IV-B is beneficial due to the reduction of the energy
consumption in the router while maintaining the performance
of NoC. However, scaling the frequency of routers using
multiple clock domains is the most suitable technique to
optimize the energy consumption of TTNoC since the energy
saving, in this case, is the lowest. In the future, we plan to
work on low-power techniques of NoC to optimize the static
power of NoC, which contributes more to the overall chip
power when the size of the transistor is scaled down.

ACKNOWLEDGMENT

This work has received funding from the ECSEL Joint
Undertaking (JU) under Grant Agreement No. 877056. The
JU receives support from the European Union’s Horizon
2020 research and innovation program and from Spain, Italy,
Austria, Germany, France, Finland, and Switzerland.

REFERENCES

[1] Xi Chen, Zheng Xu, Hyungjun Kim, Paul V. Gratz,
Jiang Hu, Michael Kishinevsky, Umit Ogras, and Raid
Ayoub. Dynamic voltage and frequency scaling for
shared resources in multicore processor designs. In 2073
50th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 1-7, 2013.

[2] Radu David, Paul Bogdan, Radu Marculescu, and
Umit Ogras. Dynamic power management of voltage-
frequency island partitioned networks-on-chip using in-
tel’s single-chip cloud computer. In Proceedings of the
Fifth ACM/IEEE International Symposium, pages 257—
258, 2011.

[3] Yatin Hoskote, Sriram Vangal, Arvind Singh, Nitin
Borkar, and Shekhar Borkar. A 5-ghz mesh interconnect
for a teraflops processor. IEEE Micro, 27(5):51-61, 2007.

[4] Andrew B. Kahng, Bill Lin, and Siddhartha Nath.
Orion3.0: A comprehensive noc router estimation tool.
IEEE Embedded Systems Letters, 7(2):41-45, 2015.

[5] Timothy G Mattson, Rob F Van der Wijngaart, Michael
Riepen, Thomas Lehnig, Paul Brett, Werner Haas, Patrick
Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar,
Greg Ruhl, and Saurabh Dighe. The 48-core scc pro-
cessor: the programmer’s view. In SC ’10: Proceedings
of the 2010 ACM/IEEE International Conference for

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

High Performance Computing, Networking, Storage and
Analysis, pages 1-11, 2010.

Asit K. Mishra, Reetuparna Das, Soumya Eachempati,
Ravi Iyer, N. Vijaykrishnan, and Chita R. Das. A case
for dynamic frequency tuning in on-chip networks. In
2009 42nd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 292-303, 2009.
Rakotojaona ~ Nambinina, = Daniel = Onwuchekwa,
Hamidreza Ahmadian, Dinesh Goyal, and Roman
Obermaisser. Time-triggered frequency scaling in
network-on-chip for safety-relevant embedded systems.
In 2021 International Conference on Smart Generation
Computing, Communication and Networking (SMART
GENCON), pages 1-7, 2021.

Rakotojaona Nambinina, Daniel Onwuchekwa, Sabikun
Nahar, Darshak Sheladiya, and Roman Obermaisser. Ex-
tension of the lisnoc (network -on-chip) with an axi-
based network interface. In 2022 6th International
Conference on Computing Methodologies and Commu-
nication (ICCMC), pages 682-686, 2022.

K. Niyogi and D. Marculescu. Speed and voltage
selection for gals systems based on voltage/frequency
islands. In Proceedings of the ASP-DAC 2005. Asia
and South Pacific Design Automation Conference, 2005.,
volume 1, pages 292-297 Vol. 1, 2005.

Roman Obermaisser, Hamidreza Ahmadian, Adele
Maleki, Yosab Bebawy, Alina Lenz, and Babak Sorkh-
pour. Adaptive time-triggered multi-core architecture.
Designs, 3(1), 2019.

Jens Rettkowski and Diana Gohringer. Wormhole com-
puting in networks-on-chip. In 2021 3ist International
Conference on Field-Programmable Logic and Applica-
tions (FPL), pages 273-274, 2021.

Martin Schoeberl. A time-triggered network-on-chip. In
2007 International Conference on Field Programmable
Logic and Applications, pages 377-382, 2007.

Vitor R. G. Silva, Alex F. A. Furtunato, Kyriakos Geor-
giou, Carlos A. V. Sakuyama, Kerstin Eder, and Samuel
Xavier-de Souza. Energy-optimal configurations for
single-node hpc applications. In 2019 International Con-
ference on High Performance Computing & Simulation
(HPCS), pages 448-454, 2019.

M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat,
B. Greenwald, H. Hoffman, P. Johnson, Jae-Wook Lee,
W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal. The raw microprocessor: a computational fabric for
software circuits and general-purpose programs. [EEE
Micro, 22(2):25-35, 2002.

TUM. Lisnoc. https://www.ce.cit.tum.de/lis/forschung/
aktuelle-projekte/optimsoc/lis-noc/. Accessed 2022-14-
09.

Jia Zhan, Nikolay Stoimenov, Jin Ouyang, Lothar Thiele,
Vijaykrishnan Narayanan, and Yuan Xie. Optimizing
the noc slack through voltage and frequency scaling in
hard real-time embedded systems. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and
Systems, 33(11):1632-1643, 2014.

[17] Pinggiang Zhou, Jieming Yin, Antonia Zhai, and

Sachin S. Sapatnekar. Noc frequency scaling with
flexible-pipeline routers. In IEEE/ACM International
Symposium on Low Power Electronics and Design, pages
403-408, 2011.

